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PREFACE 

In the oil and gas industry, a huge amount of data is generated through sensory 

measurements during exploration to production phases of the reservoir. Uncertainties and 

inexactness are present in all the reservoir measurements due to heterogeneity and 

stochastic distribution of reservoir characteristics. Conventionally, field data are interpreted 

by experienced experts to extract useful information. However, with the advent of 

measurements-while-drilling and smart-well technologies, there is a significant increase in 

the volume of data generated and to be analyzed. Therefore, processing and analysis of this 

huge data pose a significant challenge to the prevailing technologies used in the oil and gas 

industry.  In this study, the intelligent modeling approach has been investigated to provide 

cost-effective solutions for three major problems of petroleum domain viz. (a) Lithofacies 

identification (b) Drilling optimization (c) Production rate estimation.  

     Initially, ensemble-based big data analytics have been proposed for quantitative 

lithofacies modeling of the unconventional mudstone reservoir. The performance testing of 

five standard ensemble methods (viz. Bagging, AdaBoost, Rotation forest, Random 

subspace, and DECORATE) has been done to identify the prevailing subsurface 

lithofacies. The results have been generated using single well data existing in the Kansas 

region of the U.S.A. Random subspace–SVM combination has given the highest 

classification accuracy as compared to all base combinations experimented. Further, the 

application of heterogeneous ensemble models (HEMs) has been explored to generate 

more generalized results for lithofacies modeling using multiple-well data. Additionally, 

stability analysis of HEMs has also been performed to ensure the reliability of the proposed 

methodology. The performance of HEMs depends upon the selection of efficient base 
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classifiers for the quantitative lithofacies modeling. A validation curve has been found as 

an efficient measure for identifying the stable search range for machine learning 

parameters. The stacking ensemble has shown great potential to extract lithofacies 

information from well logs data. The training and testing classification accuracies of HEMs 

are the highest among the other classifiers used in this study. 

     A novel data-driven drill bit selection technique has been developed for oil and gas field 

applications. To overcome the problems associated with existing methods, Response 

surface methodology (RSM) and Artificial Bee Colony (ABC) have been used to develop 

an intelligent data-driven approach for the selection of suitable bit types. RSM has been 

implemented to generate the objective function for ROP. Moreover, the developed function 

is optimized using ABC to achieve optimum values of ROP and drilling parameters 

including bit types. The results are also compared with the existing artificial neural 

network (ANNs) model for drill bit selection. The combination of RSM and ABC provides 

a more reliable bit selection modeling approach as compared to ANN-based on cost-per-

foot estimations. The ROP objective function developed through RSM is less complex than 

the ANN-based objective function due to the absence of an exponential function. ANN 

requires more computational cost for the development of the ROP function and its 

optimization.  This study provides an alternate intelligent approach to bit selection based 

on optimum values of ROP. However, these models are case-specific as well as data-

dependent models and require calibration for other field data. 

     Advancements in intelligent predictive models have also enabled the automated 

selection of drill bit types using previously drilled offset wells data. Data-driven machine 

learning algorithms can be utilized for suitable drill bit selection. However, real-field data 



xix 
 

typically involves an unequal distribution of data samples resulting in a complex imbalance 

multi-class classification problem for drill bit selection. To overcome this problem, 

architectural adaptations along with the data re-sampling technique, have been 

incorporated in the existing ensemble methods for handling the imbalanced data problem 

in drill bit selection. Random forest with bootstrap class weighting has provided the best 

overall accuracy for the selection of drill bit types using previously drilled Norwegian 

offset wells data. It is observed that drill bit selection becomes difficult in the lower 

formations due to uncertainty in subsurface conditions. Data imbalance condition exists 

due to the drilling of thin lithofacies that harm the performance of classifiers. Conventional 

classifiers can’t be trusted for the drill bit selection, especially for critical drilling zones.   

     In another research work, data-driven models are applied for correlating the two-phase 

flow behavior of oil and gas with setting variables of surface installed chokes. Surface 

chokes are widely installed equipment on wellheads to control the hydrocarbon flow rate 

and to maintain the bottom-hole pressure. The design of these chokes and production 

strategies can be improved with the estimation of future production rates of hydrocarbon. 

An extensive literature review has been performed to address the issues related to existing 

intelligent models for daily hydrocarbon production through surface chokes. ‘Random 

forest’ and ‘Extremely randomized trees’ paradigms have been proposed to predict the oil 

and gas production rates through surface installed chokes. A comparative study has been 

performed to investigate the efficacy of the proposed and other popular machine learning 

models (viz. ANNs, SVR, etc.) for the prediction of the two-phase flow rate of oil and gas. 

Random forest and ExtraTree ensembles have outperformed the popular estimation 

models, viz. ANNs, SVR and LSSVR, for production forecasting. 
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Chapter 1 

Introduction  

1.1 Introduction 

The oil and gas industry plays a vital role in meeting the ever-growing energy demand 

of the human race needed for its sustainable existence. Newer unconventional wells are 

drilled for the extraction of hydrocarbons that requires advanced innovations to 

encounter the challenges associated with various exploration and production operations.  

To remain competitive in the globalized energy market, the oil and gas industry requires 

newer innovative technologies that can facilitate uninterrupted, cost-effective, high-

quality sustainable productions. With the ever-increasing use of advanced 

instrumentation and control in the oil and gas industry, a huge amount of data is 

generated through installed sensors in various real field operations, from exploration to 

production of hydrocarbon. Due to heterogeneity and stochastic distribution of reservoir 

properties, uncertainty and inexactness are present in all the measurements of reservoir 

properties [1]. Also, petroleum data suffer from several complexities such as 

nonlinearity, high dimensionality, noise, and imbalanced data conditions.  Petroleum 

data processing is required in several data-related tasks such as modeling and 

optimization, reservoir simulation, classification, clustering, forecasting, and monitoring 

of various petroleum events and operations [1]. These data demand advanced 

computational tools to be employed for their processing and analysis. Therefore, data-

driven machine learning models have been designed for handling complex problems 

related to classification and estimation tasks [1, 2]. These models have great potential in 

processing petroleum domain data. 
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     In the petroleum industry, the sensor-based measurements are acquired in various 

forms such as well logs, seismic logs, mud logs, reservoir data, well test data, 

production data, etc. [1,2] These data are further analyzed and interpreted by geologists, 

geophysicists, and petroleum engineers to extract useful information in decision making 

for various field operations. Traditionally, these data are interpreted by manual analysis 

by a domain expert. However, it requires great human efforts, time, and cost involving 

high chances of errors [3]. Conventional interpretation methods provide only limited 

operational knowledge and often miss recognizing several useful information hidden in 

the data. The sensory data contain serious problems of noise, nonlinearity, high 

dimensionality, etc. which decrease the accuracy of the conventional interpretation 

methods sometimes below 50 % in the oil and gas industry [3]. 

     The areas of big data analytics and machine learning have become very promising 

research fields for a wide range of applications due to the development of high 

computational systems [4,5]. These methods can process huge amounts of data, extract 

useful information from raw data, and can easily identify the hidden patterns in the 

given data. These advanced techniques can easily filter out noise, reduce 

dimensionality, model nonlinear relationships, and sometimes helpful in handling 

reservoir uncertainties [3,4]. The machine learning modeling approach has several 

advantages such as economical solution provider, quick mitigation of real-field 

problems, real-time deployment, facilitate automation to real-field operations, found to 

be more robust and reliable. However, data dependency, data availability 

underdeveloped systems, and multidisciplinary expertise are the important issues 

associated with machine learning models [3,4].  

     Machine learning models can provide practical solutions to complex petroleum 

problems. Therefore, hybrid computational models, such as ensemble methods, a 
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committee of machines, etc., were suggested for processing complex petroleum data [5]. 

These techniques are of significant importance, especially, when a high classification or 

estimation accuracy is targeted, as they can increase the generalization capabilities of an 

ML model by enhancing its modeling strategy [5]. Such hybridized models enable 

physically meaningful computation for time-demanding applications. In this research 

work, different supervised models, hybridization strategies, structural designs of hybrid 

models, learner screening criteria, and hybrid computational modeling approaches are 

tested and validated using real field data with a primary focus on their applications in 

petroleum systems and operations. Primarily, the research work carried out in this thesis 

focuses on the applications of machine learning models for lithofacies identification, 

suitable drill bit selection, optimization of drilling rate of penetration, and estimation of 

hydrocarbon production rate using diverse petroleum data. 

     The first application reported in this thesis work is on the identification of lithofacies 

for unconventional mudstone reservoirs. These geological formations are producing a 

huge amount of hydrocarbon, especially natural gas. The mudstone lithofacies are 

difficult to identify due to their overlapping properties [6]. Well-logs are mainly utilized 

for the identification of the subsurface lithofacies along with the depth through human 

experience [7]. The manual interpretation of well-logs is a time-consuming, and costly 

task [7]. It also requires human expertise for its interpretation [8]. However, the 

utilization of advance computational machine learning techniques automatize the 

analysis of well-logs and integrate results from other sources such as core analysis and 

seismic analysis to provide more authentic results [8,9]. This study has investigated 

popular supervised classifier models along with the development of several higher 

hybrid computational models for reducing uncertainties associated with reservoir 

modeling and enhancement of reservoir modeling accuracy. 
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     The second area of research work carried out in this thesis is on the utilization of 

modified ensemble methods for handling the imbalanced data problem in drill bit 

selection. With the advancement of intelligent predictive models, the automated 

selection of drill bit type is possible using previously drilled offset wells’ data. Data-

driven machine learning algorithms can be utilized for suitable drill bit selection. 

However, real-field data typically involves an unequal distribution of data samples 

resulting in a complex imbalance multi-class classification problem for drill bit 

selection. In this analysis, two methods, namely AdaBoost and Random forest, have 

been combined with the data resampling technique for the complex drill bit selection 

procedure. The four other popular machine learning techniques namely, K-nearest 

neighbor, Navies Bayes, Multilayer perceptron, and Support vector machine, were also 

evaluated individually to understand the degrading effects of imbalanced data. These 

models are trained and tested on the drilling data obtained from Norwegian Volve oil 

and gas wells. Proper pre-processing of input drilling data has been done before the 

training of machine learning models. Diverse data-driven experimental scenarios have 

been simulated to analyze the performance of data-driven models for drill bit selection.  

     Several researchers have also suggested a newer approach for drill bit selection 

based on optimum values of drilling rate of penetration (ROP). A separate study has 

been conducted for finding suitable drill bit types for drilling target formation based on 

the optimum ROP values. Instead of deploying the conventional method of offset well 

logs, Response surface methodology (RSM) and Artificial bee colony (ABC) have been 

combined to develop an intelligent data-driven modeling approach for the selection of 

optimum bit type for drilling operations. This approach also makes the optimal use of 

operational control parameters and is found more efficient than conventional methods. 

RSM has been implemented to generate the objective function for ROP. The developed 
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ROP function is further optimized through ABC to obtain the optimum values of 

drilling variables and drill bit types for target geological formations. The results were 

also compared with the existing Artificial neural network (ANN) and Genetic algorithm 

(GA) model for suitable drill bit selection. 

     The third area of research work carried out in this thesis is on hydrocarbon 

production through surface installed chokes. Surface chokes are widely installed 

equipment in the oil and gas industry. The multi-phase flow behavior of hydrocarbon 

near the surface orifical is always a matter of concern because it influences the overall 

hydrocarbon production rate. Several theories have been proposed to explain these 

phenomena, however, none of them are fully able to justify the flow and its flow regime 

behavior. Therefore, data-driven models have been investigated for the estimation of the 

hydrocarbon flow rate. Random forest and ExtraTree ensemble have been applied to 

correlate the surface measured production variables with oil and gas flow rates. It has 

been found that a data-driven model performs much better than analytical or any other 

existing empirical models.  

 

1.2 Literature review  

1.2.1 Intelligent lithofacies recognition 

Reservoir characterization is defined as the act of developing a reservoir model that has 

a resemblance with a real-world reservoir with similar properties and behaviors for 

storing and producing hydrocarbons. These models are utilized to simulate the flow 

behavior of fluids in various conditions to optimize the production strategies of the 

actual reservoir. To cultivate such a reservoir model, accurate information of reservoir 

properties such as porosity, permeability, reservoir pressure, temperature, recognition of 

lithofacies, etc. is essentially required [1].   
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     Quantitative lithofacies modeling is one of the most challenging parts of reservoir 

characterization that involves the identification of subsurface lithofacies [1]. These 

subsurface layers contain information about the depositional environment along with the 

sedimentary process of rock formation [2]. Several types of qualitative analysis of rock 

formations are performed to understand their geometries, grain size, sedimentary 

structure, etc. [2]. These analyses usually involve well logs, core analysis, advanced 

geochemical, Rock-Eval pyrolysis, etc. [3] However, it is time taking and expensive 

affair. It also requires human proficiency and huge efforts for its analysis and accurate 

interpretation. The quantitative approach has been preferred over qualitative analysis to 

achieve fast, accurate, and more economical modeling of the reservoir. The information 

about the subsurface lithofacies is extracted from the conventional well logs that are 

recorded throughout the depth of the reservoir formation. Well-logs can record the 

physical properties of rock that change logs response with depth [4]. Conventionally, 

experts manually examine well logs to identify different layers of lithofacies through 

their experience. However, there is always a high chance of human error with complex 

well-logs. The manual analysis is never considered as a good practice for the 

interpretation of well-logs. 

     Well-logs are sensor-based measurements of lithofacies such as spontaneous 

potential logs, resistivity logs, neutron density logs, spontaneous potential logs, etc. [5]. 

Several logs are used for the accurate identification of lithofacies along with the depth 

of the formation. However, these sensory recorded data are complex in nature and 

contain issues namely, nonlinearity, high dimensionality, imbalance, and noise along 

with uncertainties in measurement due to heterogeneous behavior of the reservoir [1]. 

The excavation of valuable information from the raw sensory logging data through 

manual technique becomes a difficult task with high risk. Hence, intelligent 



7 
 

mechanization is necessary to examine and extract useful information from the huge 

amount of logging data for quantitative lithofacies modeling.  

     Several intelligent machine learning models were applied for the automatic 

identification of lithofacies through computational processing of well logs data. Some of 

the important applied intelligent models are as follows as (a) Clustering technique [6]. 

(b) Principle component analysis (PCA) with Artificial neural networks (ANNs) [7, 8]. 

(c) Support vector machine (SVM) [4]. (d) Self-organizing map (SOM) and Multi-

resolution graph-based clustering (MRGC) [3] and (e) Random forest (RF) [9]. It can be 

seen that the application of conventional classifiers is mainly reported for lithofacies 

modeling. The utilization of a hybrid computational approach has been rarely done to 

extract facies information.  

     The hybrid computational approach is a popular data mining methodology that helps 

to extract useful information for the highly complex data structure. Several hybrid 

computational approaches have been in applied diverse engineering fields such as the 

committee of machines, ensemble methods, etc. These are multiple classifier systems 

that combine several supervised classifiers to enhance the efficacy of conventional 

classifiers. It has been also mathematically proven that the performance of supervised 

classifiers can be improved through multiple classifier systems [10,11]. Ensemble 

methods are found to be capable of handling nonlinear, high dimensional, noise, and 

imbalanced data.  

1.2.2 A comparative study of heterogeneous ensemble methods for the 

identification of geological lithofacies 

Mudstone lithology is a kind of sedimentary rock that contains most of the 

unconventional hydrocarbon reservoirs. It can also play multiple roles from 

hydrocarbon generation to storage [12]. Hidden sweet spots are present inside mudstone 
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lithofacies that support hydrocarbon production. These unconventional reservoir 

systems are quite difficult even for conventional interpretation techniques for lithofacies 

identification. Understanding of petrophysical properties of rocks and their spatial 

distribution in association with lithofacies are essential for the development of a 

reservoir model to produce hydrocarbon [13]. Several conventional techniques are 

performed for the recognition of lithofacies such as rock-eval pyrolysis, geomechanical 

spectroscopy logs, etc. [3]. However, these are found to be costly, time-taking, and 

demands expertise. It has been found that ensemble methods are more efficient than 

single supervised classifiers or learners. However, there exists another category of 

ensemble methods that show greater potential than the previously defined ensemble 

classifier for lithofacies recognition. These can dig deep for more information from raw 

well-log data. It also integrates the outcomes of various classifiers for pattern 

recognition tasks. Ensemble methods can be characterized into two kinds: (a) 

homogeneous ensemble methods (HoEMs) such as Bagging, Rotational forest, Random 

subspace, etc., and (b) heterogeneous ensemble methods (HEMs) such as Stacking, 

Voting, StackingC, etc. HoEMs generate several hypotheses in the feature space using 

similar classifiers (e.g., a group of five hundred ANNs) and combine them to achieve 

maximum accurate classification results. However, HEMs combine various dissimilar 

classifiers (e.g., A cluster containing n SVMs, n ANNs, n Naïve Bayes, etc.) in the 

feature space. It has been proved mathematically that these models are more efficient 

than HoEM due to the heterogeneity in the base classifiers and provide more 

generalized results with reduced prediction errors [14]. However, these methods are not 

much investigated for their possible application in the petroleum domain. 
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1.2.3 Intelligent drill bit selection 

Rocks formations are crushed into chips through drill bits that are installed at the bottom 

of the drill string. Several methods have been applied for finding the optimum bit type 

mainly based on measured data taken from offset well logs with limited applicability. 

Out of these methods, the most popular method in use is cost per foot (CPF) estimation 

for drilled intervals [15]. The method is popular as it is based on the operating cost of 

the drilling operation. CPF can be measured using a formula. 

                            
( )C C RT T T

PF
Bit Rig Bit CN Trip

C
DF

  
                                  (1.1) 

where BitC is the bit cost in dollars, RigC is the cost of rig per hour, BitRT is the bit 

running time in hours, CNT is connection time in hours, TripT is the trip time in hours, 

and DF is the sectional length of wellbore drilled in feet. CPF is used in combination 

with other methods as it doesn’t depend on the operational parameters but the drilling 

economy is highly affected by them. CPF also has one more disadvantage that it can’t be 

used in the case of directional and horizontal wells. CPF has been proven efficient in the 

analysis of historic drilling data obtained from the offset wells and current supervision 

of bit run [15,16]. Back in the 1960s, Teale formulated a notion of Specific Energy (SE) 

by establishing a relationship between bit energy requirement and its performance 

[15,16]. In rock drilling, SE is the energy spent by the machine to eradicate unit rock 

volume [17]. The SE formula is given below.  

                                               
*

*E
RPM WOB

S
ROP BD

                                                      (1.2) 

where RPM is the rounds per minute in rpm, WOB is the weight on the bit in pounds, 

ROP is the drilling rate of penetration in feet per hour, and BD is the bit diameter in 

inch. As it is clear from the formula, SE is governed by only three parameters mainly, 
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ROP, WOB (weight on bit), and RPM, which proves to be less advantageous. It also 

can’t distinguish between various formations based on mechanical properties and 

vibrations effects on the dulling of a bit [17]. 

     The international association of drilling contractors (IADC) has adopted a new dull 

grading system for selecting bits on their degree of dullness for roller cone as well as 

fixed cutter bits. In this regard, IADC used to report various parameters of drill bit such 

as teeth wear, bearing conditions, etc. on a scale from 1 to 8, where 1 is excellent and 8 

being the poor condition. The dullness of the drill bit is a crucial factor as if the bit 

wears fast, it adds to drilling cost and more time consumption which indirectly affects 

the economics of drilling operation. So, one needs to carefully select the bit by 

evaluating data as it will lead to extra cost to projects [18]. 

     In 1964, Hightower selected drill bits from geological information and logs from 

offset wells [19]. Sonic logs were used to find the right bit for drilling operations by 

estimating the formation strength to define the drillability of the formation. The rock 

strength utilized in this method was not measured directly from sonic logs but estimated 

indirectly from the theory of elasticity. Bourgoyne and Young [20] utilized a multiple 

regression approach for ROP modeling and considered drill bit types as an important 

factor influencing the drilling operation. Rabia et al. [21] proposed the selection of a bit 

based on mechanical specific energy. Fear et al. [22] selected drill bits based on the 

geology and rock properties of the formation. Perrin et al. [16] proposed a novel drilling 

index for the evaluation and selection of drill bit types for drilling operations. Uboldi et 

al. [23] utilized rock strength measurements as criteria for the choice of drill bits. Bahari 

and Seyed [15] applied mathematical correlations as objective functions for the 

optimization of various drilling variables and operational costs. 
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     Recently, data-driven intelligent models have been utilized to find suitable types of 

drill bits. These models are reported to be more accurate as they learn from previous 

well data, defying traditional methods for selecting the appropriate drill bit [24]. Bilgesu 

et al. [25] used ANN for the prediction of drill bit types for drilling target geological 

formations. Yilmaz et al. [26] trained the ANN model using previously drilled wells 

offset data and predicted the drill bits types for the development wells required to be 

drilled internal and external of the same field. They also tested the trained ANN model 

for the prediction of drill bit types for the development wells that were required to be 

drilled in an adjoining field. Bahari et al. [15] utilized a Genetic algorithm (GA) for the 

accurate computation of constants for the Bourgoyne-Young ROP model. Edalatkhah et 

al. [27] also selected the suitable drill bit types using ANN and GA for South Pars Field 

wells. Momeni et al. [28] applied ANN for the estimation of drilling ROP and bit types 

[14]. Momeni et al. [29] combined ANN and GA for drill bit selection based on optimal 

ROP. They selected the drill bit types based on the optimum values of ROP and drilling 

variables. Abbas et al. [18] also supported the notion of drill bit selection depending 

upon optimum values of ROP using ANN and GA. Here ANN was primarily utilized 

for the development of the objective function and GA for optimization of the ROP 

objective function for the drill bit selection.  

     Several researchers have suggested that the selection of drill bits should be 

performed based on the optimum values of ROP. This condition results in the 

development of an unconstrained bounded optimization problem, where a function of 

ROP is required to be defined using drilling variables. However, the exact relationship 

between ROP and drilling variables is unknown and undefined which makes 

optimization of ROP a difficult task. According to Kolmogorov's theorem, multilayer 

feedforward perceptron (MLP) ANN architecture can be utilized to define any 
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continuous function in its approximation form [30]. The approximation function 

(objective function) requires an activation function and input variables that are 

predefined during the training of the MLP neural network. Three-layered MLP 

architecture can be expanded in a mathematical form with connection weights and bias 

of neurons that will act as coefficients of approximation function. This technique helps 

to solve real-field complex optimization problems, especially where the association 

between input and target variables is unknown such as bit selection based on optimum 

ROP values. In the case of complex approximation function, paradigms such as ant 

colony, swarm optimization, GA, etc. can be implemented to retort the optimization 

problem as stated in the literature [31]. However, researchers reported several issues 

with ANN such as overfitting, underfitting, stuck up in local minima/maxima, lack of 

proper guidelines for the selected network architecture, [32]. This also opens the 

opportunity to investigate other techniques that can generate approximation functions to 

optimize ROP values for drill bit selection. More research work is required to automate 

the drill bit selection procedure for better reliability and efficacy. 

1.2.4 Intelligent forecasting of hydrocarbon production 

Hydrocarbon production forecasting is an important task for reservoir engineers to 

measure the performance of installed production systems. It also plays a vital role in the 

estimation of remaining hydrocarbon inside the producing reservoir formations, 

optimization of production operations, reservoir management, and business planning 

[35]. Continuous recording and monitoring of daily hydrocarbon production data are 

usually done to forecast future well production. However, it is a challenging task due to 

the reservoir’s heterogeneity and complex interactions of the reservoir with hydrocarbon 

production systems [36]. The production of multiphase fluid through surface choke is 

also influenced by the behavior of the producing reservoir formation in static and 
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dynamic conditions [36]. Accurate assessment of reservoir properties, itself, is a 

problematic issue and its heterogeneity adds uncertainties in all types of reservoir 

measurements [37,38]. In the petroleum domain, production forecasting has always 

been considered a thought-provoking and popular problematic task due to the 

complexity of acquired production data [39]. 

     Several empirical models and correlations have been proposed to predict the multi-

phase flow through surface installed chokes. Wellhead chokes are widely installed to 

control the oil and gas flow rates on the surface, to maintain downhole pressure, and 

also to produce back pressure that protects the reservoir from formation damage [40-

43]. To regulate the flow rate for meeting various regulations, chokes are installed to 

minimize various problems owing to varying production rates which may be slugging of 

surface equipment, avoid excess sand production caused due to high drawdown, and 

water/gas coning [44,45]. A significant part of the production optimization relies 

heavily on the study of the flow behavior through the chokes i.e., whether the flow is 

subsonic or sonic [46]. The critical pressure ratio is calculated to distinguish between 

sub-sonic and sonic flow conditions. It is approximately 0.55 for natural oil and gas 

above which subsonic condition prevails. When the fluid velocity in a choke matches 

the traveling velocity of sound in the fluid under in-situ conditions then such type of 

flow is termed sonic flow [47]. Under sonic flow conditions, the pressure wave 

downstream of the choke cannot go upstream through the choke because the medium is 

traveling in the reverse direction at a similar velocity [42]. 

     Several correlations have been developed theoretically or empirically using 

experimental or field production data to study the simultaneous oil and gas flow 

behavior in sonic and sub-sonic conditions through chokes. Tangren et al. [48] 

contributed the first study on wellhead chokes and their effects on the production rate of 
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hydrocarbons for the continuous liquid phase. Gilbert [49] correlated oil production rate 

with wellhead surface choke size, gas oil ration, and wellhead pressure. Ros [50] 

reported that a correlation existed between upstream pressure, restriction size of choke, 

and flow rate of hydrocarbon. Several other researchers also proposed similar 

correlations for the oil production rate using diverse field data [51-55]. Al-Attar and 

Abdul Majeed [56] tested several proposed correlations to provide the best fitting for 

East Baghdad Oil field production data. They found that the revised correlation was 

similar to the Gilbert equation with different constants values. Mirzaei-Paiaman and 

Salavati [42] proposed a newer correlation for the flow of oil through wellhead chokes 

using Persian oil field data. All the correlations have been developed either theoretically 

or empirically for wellhead chokes and multiphase hydrocarbon production based on 

experimental data or field data [42][49-54]. Theoretical correlations developed using 

field data require a large number of parameters collection from fields which is a time-

consuming and costly affair. On the other side, experimentally developed empirical 

correlations lack generalizability due to the limited range of experimental data. 

Therefore, advanced machine learning techniques have been employed to model the 

production rate of hydrocarbon with the surface installed chokes.  

     Researchers have widely utilized machine learning techniques to correlate variables 

that have complexities in their relationships. Machine learning techniques have 

achieved more reliable and generalized prediction models for several engineering 

domains such as reservoir characterization, drilling automation, etc. Morzaei-paiaman 

and Salavati, [42] applied the ANN model for the estimation of the oil production flow 

rate. He also compared the prediction results of ANNs with the correlations proposed by 

Mirzaei-Paiaman [43], Gilbert [49], Ros [50], Achong [51], and Baxendell [52] to prove 

that ANNs results are more accurate than empirical and theoretical correlations. Elhaj et 
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al. [53] studied ANN along with Fuzzy logic, Functional networks, Decision tree, and 

Support vector machines for single gas flow rate forecasting. Choubineh et al. [35] 

applied hybrid ANN training-based optimization for modeling the hydrocarbon flow 

rate.  Figure 1.1 shows data diversity existing in Petroleum domain. 

 

Figure 1.1 Data diversity existing in Petroleum domain [57]. 

     ANNs are one of the most popular intelligent modeling techniques for correlating 

complex variables together. However, ANN has certain limitations such as stuck up in 

local minima/maxima, over-fitting/ under-fitting, etc. [54]. These shortcomings 

challenge the reliability and generalizability of the results provided by ANN. Other 

machine learning models are not much studied for modeling hydrocarbon production 

rate from surface installed chokes. Moreover, some intelligent models can handle the 

limitations and shortcomings of ANN such as Support vector regression (SVR), Least-

square support vector regression (LSSVR), RF, Regression tree, etc. Nejatian et al. [55] 

estimated the choke flow coefficient for sub-sonic flow conditions of natural gas using 

LSSVR. Gorjaei et al. [56] utilized PSO-least square support vector regression (PSO-
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LSSVR) to predict the two-phase flow of oil and gas through the surface installed 

choke. These studies have shown that other machine learning techniques can also be 

adopted for modeling hydrocarbon production rates through surface installed chokes.  

 

1.3 Motivation  

Technical advancements in data acquisition technologies have changed the conventional 

workflow of the oil and gas industry [3]. Advance data acquisition technologies such as 

mud pulse telemetry, logging systems, seismic tools, etc. provide more accurate 

information and lead to the automation of various field operations [1,3]. However, these 

technological advancements have also resulted in newer challenges in data processing 

and analysis for the extraction of useful information from raw data. Further, the 

captured petroleum field data are naturally complex with high uncertainties in their 

measurements due to the heterogeneity of hydrocarbon reservoirs [1]. Thus, oil and gas 

field data require advanced computational techniques for their processing and analyses.  

     Petroleum researchers have suggested intelligent machine learning models for 

handling the problems related to the petroleum domain. Supervised and unsupervised 

machine learning models are widely applied for solving field-related issues such as drill 

pipe stuck up [57], lithofacies identification [3], reservoir properties estimation [3], 

drilling parameter estimation [15], drill bit selection [18], hydrocarbon production 

forecasting [38-56], etc. These intelligent paradigms have given impressive accurate 

outcomes for various petroleum applications. However, these models have their 

limitations and shortcomings as explained in the literature review section of this 

chapter. These models are highly influenced by bias and variance associated with the 

training data which increases the chances of large errors in the prediction outcomes and 

compromised generalization performance. To overcome the abovementioned data-
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related issues, ensemble methods are proposed in this study. Ensemble methods are less 

explored intelligent paradigms that have the potential to solve the problems of the oil 

and gas industry. The ensemble approach is particularly investigated in this thesis to 

handle issues related to lithofacies identification, drill bit selection, and production 

forecasting.  

     This thesis approaches oil and gas problems at two levels i.e. data level as well as 

algorithm level to enhance the efficacy of existing machine learning models. Initially, 

acquired field data have been studied to eliminate data-related issues such as abnormal 

data samples, noise, high dimensionality, imbalance, etc. A proper preprocessing stage 

has been developed to solve any data-related issue before training and testing an 

intelligent paradigm at the data level. Secondly, machine learning algorithms have been 

investigated at the algorithmic level, compared, and modified to achieve the best 

possible outcomes. The primary research goals of this thesis are to investigate the 

applicability, reliability, and effectiveness of potential machine learning models for 

providing data-based solutions for various issues in the upstream industry using diverse 

petroleum data. The focus of this study is to perform a comparative and comprehensive 

investigation, on various conventional and advanced intelligent models for their 

suitability and efficacy, in solving important issues in the petroleum industry. Also, 

investigations have been carried out to provide proper guidelines for the development of 

the computational framework and preprocessing of the raw field data before training 

and testing of machine learning models.  

 

1.4 Research questions  

 How HoEMs can be applied for the modeling of lithofacies of mudstone 

reservoir? 
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 Which is the most suitable HoEMs and base classifier combination for the 

identification of geological mudstone lithofacies? 

 How do better generalization can be achieved on multiple well data using HEM 

approach?  

 How does an alternative approach can be developed to challenge existing ANN 

model for drill bit selection based on optimum values of drilling ROP?    

 What can be done to handle the imbalanced data problem during drill bit 

selection? 

 What are the performance efficiency of earlier applied machine learning models 

for forecasting oil and gas production through a surface installed choke ? 

 Is there proper guideline and workflow available in the petroleum domain for 

machine learning applications? 

 

1.5 Research gap  

The petroleum data have several issues such as high dimensionality, noise, imbalance, 

nonlinearity, diversity in data format, large storage space requirements, computational 

expense, etc. that are needed to be addressed adequately to make the results more 

authentic. There are no proper guidelines, for the implementation of machine learning 

models to solve the problems of the oil and gas industry, in the existing literature. Most 

of the existing literature lacks a comprehensive and comparative study for machine 

learning models for similar data and problems. Hybrid computational models are not 

much explored in the petroleum domain that may provide more generalized results. The 

overfitting and underfitting conditions also hamper the reliability of prevailing 

intelligent models for real field applications. There is also lack of understanding in oil 

and gas problems at two levels i.e. data level as well as algorithm level for existing 
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machine learning models. Acquired field data contain a lot of data-related issues such as 

abnormal data samples, noise, high dimensionality, imbalance, etc. A proper 

preprocessing stage has to be developed for solving any data-related issue before 

training and testing an intelligent paradigm at the data level. 

 

1.6 Research objectives  

Considering the limitations of the existing work as discussed above sections, the main 

objectives behind the research work carried out in this thesis are as following:  

 To propose homogeneous ensemble methods for automatic identification and 

recognition of geological lithofacies for unconventional mudstone reservoirs. 

 To investigate and apply heterogeneous ensemble methods for geological 

lithofacies modeling.  

 To propose Response surface analysis and Artificial bee colony for drill bit 

selection based on optimum values of drilling penetration rate.    

 To apply the combination of ensemble methods and data resampling techniques 

for handling the imbalanced data problem during drill bit selection. 

 To compare the performance of existing machine learning models for 

forecasting oil and gas production through a surface installed choke. 

 To propose proper working frameworks and guidelines for the application of 

various data-driven models in the petroleum domain to handle data-related 

issues. 

 

1.7 Hypothesis of work 

 Modeling of lithofacies of mudstone reservoir is possible through HoEM. 
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 Diverse performance behaviors can be measured for ensemble-base 

combinations. 

 HEM provides better generalization on multiple well data.  

 Existing ANN based bit selection model can be outperformed with an RSM and 

ABC combination based on optimum values of drilling ROP.    

 Imbalanced data problem can be handled through ensemble and data resampling 

techniques. 

 The estimation performance of machine learning models varies for oil and gas 

production through a surface installed choke. 

 Machine learning applications need proper guideline and framework for 

handling data related issues. 

 

1.8 Problem Statement 

 The processing and analysis of this huge data pose a significant challenge to the 

prevailing technologies used in the oil and gas industry. With the advancement of smart 

sensors, and IIoT, technologies, huge amount of data are generated by upstream 

industry. This requires hybrid machine learning models for their processing to extract 

useful information. Hybrid ensemble models can be utilized for sloving various issues at 

data level as well as algorithm level also. However, these methods are not much 

investigated in the literature for their possible application in the petroleum domain. In 

this thesis, the intelligent modeling approach has been investigated to provide cost-

effective solutions for three major problems of petroleum domain viz. (a) Lithofacies 

identification (b) Drilling optimization (c) Production rate estimation. 
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 Modeling of lithofacies is a challenging task due to the prevailing uncertainties 

in all the reservoir related measurements and less generalization capability of 

single supervised models. 

 The selection of suitable drill bit types is a challenging problem in drilling 

operations. Earlier models have their own limitations and shortcomings which 

are needed to be thoroughly studied and required development of an alternative 

data driven solution. 

  Ensemble classifiers are required to be investigated for drill bit types selection 

problem which formulates as multiclass imbalanced classification challenge and 

need adjustments at data and algorithm levels. 

  Several empirical models and correlations have been proposed to predict the 

multi-phase flow through surface installed chokes. However, no proper 

guidelines and performance comparison are available in the literature for ML 

implementations.   

 

1.9 Conceptual framework for processing petroleum data 

A diverse variety of data exists in the petroleum domain that is difficult to process 

together even if they are describing the same reservoir properties such as core data, well 

logs, and seismic data, etc. All the before said data types are helpful for the 

identification of lithofacies, however, they require separate processing techniques for 

their interpretation. Petroleum data also suffer from several complications such as 

nonlinearity, high dimensionality, noise, and imbalanced data conditions as mentioned 

earlier. These impurities adversely affect the pattern recognition capabilities of machine 

learning models and increase the prediction errors significantly due to bias and variance 

of data. Additional processing steps have been added before the training and testing of 
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different machine learning models. Intelligent modeling proposed in this research work 

is broadly classified into three stages for rectifying the issues related to petroleum data 

namely, the preprocessing stage, model development stage, and post-processing stage. 

These stages are further explained in detail in forthcoming chapters. Figure 1.2 shows a 

conceptual framework for the identification of lithofacies using well log data.  

 

Figure 1.2 Conceptual framework for the identification of lithofacies using well logs 

data [54]. 

 

1.10 Dataset description 

The datasets used for training, validation, and testing of different machine learning 

models, used in the thesis, primarily belong to Norwegians Volve and Kansas, U.S.A. 

Both of these oil and gas fields have published their data in the public domain for 

academic and research purposes. A general introduction about both the fields has been 

described as given below.  
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1.10.1 Kansas field 

Kansas region is mainly composed of sedimentary rocks with a maximum width of 

2850 m. A large number of unconformities occur in the Kansas region with the 

sedimentary strata having 15–50% of the post-Precambrian period [58]. Northeastern 

Kansas is enclosed by Pleistocene glacial deposits. A thick layer of Mesozoic rock is 

present in the western Kansas region. Mesozoic rock layers are mainly made up of 

limestones, chalks, sandstone, marine shales, and nonmarine shale contents. Panoma 

field and Hugoton field, existing in western Kansas, comprise large natural gas-

producing reservoirs. Pennsylvanian and Permian systems are the broadest structures of 

rock containing bedded rock salts in several layers. The pre-Pennsylvanian system 

existing in Kansas contains dolomites, marine, limestones layered alternatively with 

sandstones and shales. The Precambrian basement is composed mainly of quartzite, 

granite, and schist. Permian strata contain the carbonate reservoirs that produce the 

majority of natural gas. In 1992, Mississippian strata produced 43% of cumulative 

hydrocarbon production of the Kansas field out of which 19% contributed to cumulative 

oil production [59]. The numerous unconformities available in the Kansas region help 

trapping and migration of petroleum. Basal Pennsylvanian in Kansas has a huge 

deposition of hydrocarbon along with its length. A detailed description of the petroleum 

geology of the Kansas region can be found in Newell [59,60], Merriam [58], Adler et al. 

[61], and Jewett and Merriam [62]. Manual interpretation of wells logs data of such a 

huge hydrocarbon producing region is time-consuming and costly. Therefore, automatic 

detection and identification of subsurface lithofacies using machine learning algorithms 

are highly desirable to minimize cost and time. Figure 1.3 shows maps of Kansas oil 

and gas fields.  
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Figure 1.3 Maps of Kansas oil and gas fields.  

1.10.2 Volve Field 

The Volve field was explored in the central North Sea with 80 m below water depth in 

1993. Its hydrocarbon-producing reservoir consists of sandstone belonging to the 

Jurassic age at the depth of 2750 m-3120 m. Drilling operations started on the Volve 

field in May 2007 followed by hydrocarbon production in the same year with lifetime 

anticipation of three to five years. However, its production continued three years longer 

than the expected number of years. Total oil production of the Volve field was expected 

to be nine and a half million barrels with a recovery of 54%. Later, it was shut down in 

October 2016 by a joint decision of the investors viz. Statoil, Bayen Gas, and 

ExxonMobil. The wells data were made public for research and academic purposes on 

the website of Equinor company.  The three issues stated during the drilling of the 

abovesaid field were wellbore stability, rock mechanics, and loss of circulation 

problems. Pore pressure (PP) recorded during drilling varied along with the formation 

depth. In well 15/9-F-4, the PP gradient fell in the Shetland group whereas increased in 

Draupne shale. The initial PP gradient recorded in well 15/9-F-4 was 1.14 sg or 335 bar 

that dropped up to 0.95 sg or 280 bar in different reservoir formations. The value of 

maximum collapse pressure estimated in the lower Hordaland Group was 1.40 sg and 
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1.38 sg in Draupne shales. Hordaland shale was unstable for high-angle wells with 

higher pore pressure. Balder formation in the Rogaland group had a low fracture 

gradient because of its tuffaceous and friable nature. It also acted as a loss zone with a 

high vulnerability to washouts. Cromer Knoll and Sola formations were the most 

unstable formation zones. Ty formation and Balder formation were recognized as 

potential loss zones before drilling operations. Figure 1.4 shows geographical location 

of the Norwegian Volve field. 

 

Figure 1.4 Geographical location of the Norwegian Volve field. 

1.11 Dissertation outline 

     Chapter 2 investigates the feasibility of the application of the ensemble approach for 

the development of lithofacies recognition models.  It also describes the comparative 

performance testing of five potential ensemble methods for quantitative lithofacies 

modeling. Additionally, it discusses the effect of imbalanced well-logs data on the 
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performance of supervised learners. The comparative results have been generated using 

single well data existing in the Kansas region of the U.S.A.  

     Chapter 3 explains the utilization of heterogeneous ensemble models (HEMs) for 

lithofacies identification using multiple wells data for generating more generalized 

results for the Kansas region. This study also elaborates on the benefits of HEMs over 

other techniques for quantitative lithofacies modeling.  

     Chapter 4 describes the application of Response surface methodology (RSM) for the 

development of the objective function of ROP for its optimization. Further, drill bits are 

selected based on optimum ROP values for the target formation.  

     Chapter 5 describes possible solutions for complex imbalanced multi-class 

classification problem that occurs during data-driven drill bit selection. Architectural 

modifications in ensemble methods are proposed with the data re-sampling techniques 

to provide a new and efficient approach for handling the complex drill bit selection 

process. Additionally, four popular machine learning techniques are also evaluated to 

understand the performance degrading effects of imbalanced drilling data obtained from 

Norwegian wells. The issue of data imbalance has been discussed in detail with possible 

remedies for the selection of suitable drill bits. 

     Chapter 6 illustrates the modeling of hydrocarbon production through surface 

installed chokes using machine learning models. The multi-phase flow behavior 

influences the overall hydrocarbon production rate. Therefore, data-driven models have 

been proposed and investigated for the estimation of the hydrocarbon flow rate. 

     In Chapter 7, the main contributions and results of this thesis work are summarized.  

The potential future implications of these studies along with the future research scope 

are also highlighted in this chapter. 
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Chapter 2 

Study of Homogeneous Ensemble Methods for the 
Identification of Geological Lithofacies 

 

2.1 Introduction 

Quantitative lithofacies modeling is an essential part of reservoir characterization to 

identify different subsurface layers. Well-logs are primarily utilized to recognize 

reservoir rock layers underlying along with the depth of the formation. Conventionally, 

interpretation of logs is performed manually which requires cost, time, and domain 

expertise. Quantitative lithofacies modeling is a difficult task because of several factors 

as listed below.  

(a) Limited availability of core samples due to economic and logistic constraints;  

(b) Overlapping lithofacies facies;  

(c) Uncertainties in subsurface measurements;  

(d) Hard to identify thinner geological layers;  

(e) Variations within thick lithofacies;  

(f) Difficult to detect facies boundaries; and  

(g) Big data problem.  

With the advancement in computational capability, intelligent paradigms are applied for 

the automatic detection and classification of well logs data [5]. Mainly, single 

supervised classifiers have been utilized for the recognition of lithofacies [3,5]. 

However, they have their limitations and shortcomings [5]. Therefore, advanced hybrid 

computational models have been investigated in this study for quantitative lithofacies 

modeling. 
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     Several intelligent machine learning models were applied for the automatic 

identification of lithofacies using computational processing of well logs data. Some of 

the important applied intelligent models are as follows: (a) Clustering technique [6]; (b) 

Principal component analysis (PCA) with Artificial neural networks (ANN) [7, 8]; (c) 

Support vector machine (SVM) [4]; (d) Self-organizing Map (SOM) and Multi-

resolution graph-based clustering (MRGC) [3]; and (e) Random forest [9]. It can be 

seen that the application of conventional supervised classifiers is mainly reported for 

lithofacies modeling. The utilization of a hybrid computational approach has been rarely 

explored to extract facies information.  

      This chapter presents the application and comparison of five ensemble methods 

namely, Bagging, AdaBoost, Rotation forest, Random subspace, and DECORATE for 

quantitative lithofacies modeling. It also considers seven popular classifiers (namely 

Naïve Bayes (NBC), Logistic regression (LogR), Multilayer perceptron (MLP), Radial 

basis function (RBF), SVM, Classification & regression tree (CART), and C4.5 

Decision trees) as base classifiers in the proposed ensemble-based lithofacies modeling. 

The primary objective of implementing ensemble methods for lithofacies modeling is to 

enhance the efficacy of the base classifiers.  

2.2 Background 

The exploration of oil and gas initiates with the identification of potential geological 

formations, seismic survey, and drilling of wild cats. After drilling of wild cat wells, 

coring is initially performed to collect the rock samples. Collected samples are tested in 

the laboratory to measure the formation’s rock and fluid properties. However, the 

process of coring is found to be costly which limits the availability of core samples.  

Thus, well logging techniques are implemented. The wireline tools are lowered in the 

drilled formations to assess the presence of sufficient hydrocarbon inside the 
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lithological formations. The logging started on 5th, September 1927, when H. Doll and 

Schlumberger brothers at Pechelbronn first recorded semi-continuous resistivity 

measurement in the Alsace oil field [63]. A sonde is a measurement device that is 

lowered inside the wells during wireline operation to record the characteristic of the 

subsurface geological formations inside the wellbore. These logs serve varied purposes 

for geologists, production geologists, and petro physicists. The geologist is primarily 

concerned with the depositional environment, lithology, and stratigraphy of subsurface 

formations prevailing inside wellbores. Exploration geologists develop a large-scale 

image of underlying geology using different logs that are helpful in reservoir modeling 

and to determine the location for drilling a new well. The production geologist also 

performs a similar task with more information to produce a detailed geological reservoir 

model which plays an important role in reservoir management.  

     The petrophysicist utilizes all the available information to study the physical, 

chemical, mineralogical properties of reservoir rocks along with the distribution of fluid 

inside the reservoir formations. The petrophysicist mainly identifies sweet spots, 

estimates reservoir properties, predicts the volume of hydrocarbon present inside the 

reservoir formation, and designs strategies for reservoir management for the long-term 

recovery of oil and gas. Conventionally, experts manually examine well-logs to identify 

different layers of lithofacies through their experience. However, there is always a high 

chance of human error during the manual interpretation of complex well-logs. The 

manual analysis is not considered good practice for the interpretation of well-logs.  

     Nowadays, measurements while logging has been utilized to record multiple data 

from the downhole wellbore. This system typically consists of a downhole sensor unit, a 

telemetry system, a power source, and a surface display device. A huge amount of data 

are generated with measurement-while-drilling (MWD) or logging-while-drilling 
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(LWD) that are manually interpreted by experts to identify subsurface information. 

Table 2.1 shows different types of logging usually performed on the oil and gas fields. 

The information collected through MWD or LWD data analyses is mainly utilized for 

reservoir characterization so that an accurate reserve model can be developed to 

estimate the static and dynamic behavior of the hydrocarbon reservoir.  

 

                                   (a)                                                      (b)                                    

Figure 2.1 Wireline logging tools (a) depicts elements of logging tool viz. measurement 

sonde, wireline, and mobile laboratory. (b) The four well logging sonde tools: (left to 

right) dipmeter, sonic log, density logging tool, and dipmeter with multiple electrodes 

[63].  

 

2.3 Homogeneous ensemble methods  

Ensemble methods are multiple classifier systems that help to identify hidden patterns 

inside the complex data. It combines the decisions of several supervised classifiers for 

classification and estimation tasks to achieve more accurate results. Ensemble methods 

improve the performance of conventional classifiers known as base classifiers [64,65]. 

Ensemble techniques integrate diverse hypotheses to obtain the highest possible 

classification accuracy for a specific base classifier in feature space [66]. Ensemble 
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methods have distinct characteristics for handling the issues of complex petroleum data. 

Therefore, ensemble classifiers seem to be a better alternative for the extraction of 

useful information from sensory logging data. 

    To combine outcomes of base classifiers, the ensemble uses either weighted or 

unweighted voting rules [64-66]. The architecture of the ensemble approach can be 

generated in numerous ways such as random choice of training data, a random selection 

of feature space, increasing diversity of training data, manipulation of the error function, 

etc. [64-66]. The decisions of base classifiers are combined through fusion methods 

such as majority voting, Borda count, algebraic combiners, etc. [67].  Base classifiers 

are also termed weak classifiers, unstable classifiers, classifiers of low complexity, and 

badly performing classifiers [67].  It has been reported that the performance of a weak 

or unstable classifier can be enhanced in three ways namely, regularization [68], noise 

injection [69], and a system of multiple classifiers [64-66]. In this research work, five 

ensemble methods have been tested for the recognition of lithofacies as given below. 

2.3.1 Bagging  

Breiman et al. [70] united notions of bootstrapping and aggregating techniques together 

for the training of base classifiers. A random independent sampling of training data with 

replacement is done to generate bootstrap samples [71]. These bootstrap samples are 

utilized for the training of base classifiers simultaneously. Bootstrapping generates m 

bootstraps replicate samples 1 2( , ,.... )m MX X X X where (m=1,2,3,….M) ) from 

training set X with replacement. Base classifiers are trained simultaneously on Xm 

random data samples. Aggregating combines the outcomes of base classifiers together 

for the final classification decision. During the testing phase, class labels of test data are 

decided by majority votes acquired through aggregating the decisions of trained 

base/weak classifiers. Base classifiers are trained on unlike set of samples so  



32 
 

they are different from each other. The classification of test data samples is decided by 

majority voting acquired from base classifiers. Figure 2.2 shows a generalized workflow 

of the ‘Bagging ensemble’ classifier used in QLM. Bagging technique is implemented 

in following ways. 

 Generate bootstrap replicate samples Xm, 1 2( , ,.... )m MX X X X  from the 

training data X (m=1,2,3,..M). 

 Train the base classifiers ( )mC x  on mX datasets. (m=1,2,3,4….M).  

 Combine classifiers outcomes using simple majority voting to a final decision 

rule as given below. 
  sgn1, 1

arg max ( ( )),i iiy
C x yl 

 
   where 1

, 0{ i j
i j i j 

 is 

the Kronecker symbol, yl is the class label of the classifier.  

 

Figure 2.2 A generalized workflow of the ‘Bagging ensemble’ classifier used in QLM. 

2.3.2 AdaBoost  

Freund and Schapire, modified the boosting algorithm to develop the AdaBoost 

ensemble [71]. AdaBoost trains ensemble classifiers by resampling the original data and 
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combine their decisions through weighted majority voting rule. AdaBoost generates 

consecutive bootstrap Xm samples and initially assigns equal weights to all training data 

samples. AdaBoost trains the preliminary base classifier 1( )C x  on the initial bootstrap 

data samples X1. Later, weights are adjusted according to the misclassifications made 

by the initial base classifier 1( )C x . The weights of incorrectly classified training 

samples are increased in a next modified training set. Hence, the chance of recurrence of 

the misclassified samples in next training samples X2 increases for 2 ( )C x . 

Classification results are produced by the combination of the weighted votes or 

decisions of the base classifiers ( )mC x . The weights of base classifiers are decided 

based on their classification performance. AdaBoost can be implemented in the 

following ways. 

 Generates bootstrap training samples 1 2( , ,.... )m MX X X X  and combines with 

these sets of weights mW ,  1 2( , ,.... )m MW W W W . (m=1,2,3,4…M) 

 Train the base classifiers ( )mC x  by using weighted samples m mX W , 

 1 1 2 2( , ,.....m m M MX W X W X W X W  and calculate the probability estimates of 

error as given below. 
1

1 M

m j j
j

err W
M




   where 
1
0{

j

otherwise
j if X is classified correctly   and 

combining weight is calculated as follows 
11

log
2

m
m

m

err
C

err

 
  

 
. 

 Set 1 exp( )m m m
i i w iw w C   if the error is between 0 to 0.5, (i=1,2,3,..M) and 

renormalize so that 1

1

,
M

m
i

i

W M



 else if set all the weights to 1 and repeat the 

step again.  
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   Combine classifiers outcomes using simple majority voting to a final decision 

rule as given below. 
  sgn1, 1

arg max ( ( )),i iiy
C x yl 

 
   where 1

, 0{ i j
i j i j 

 is 

the Kronecker symbol, yl is the class label of the classifier.  

 

Figure 2.3 A generalized workflow of the ‘Adaboost ensemble’ classifier used in QLM. 

2.3.3 Rotation Forest  

Rotation forest trains its base classifiers using extracted features of the subsets 

generated from the training dataset. Initially, training data are partitioned into subsets, 

and then the principal component analysis is applied to extract the features from these 

subsets. Let 1 2( , ,.... )m MX X X X be the original training data samples containing H 

features and dimensionality N H . Let Y be the vector containing class label 

1 2( , ,.... )n NY Y Y Y . Initially, features H are randomly split into M subsets:

, ( 1,2,.. )i jH for j M  . Let , 'i jX  is the bootstrap samples data samples generated from 
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75% of ,i jX . Apply principal component analysis on , 'i jX to obtain the principal 

coefficients. The coefficients are arranged in a rotation matrix ,i jRo is rearranged into  

, 'i jRo  to develop the same order of features as in H. Build a classifier iS  using 

,( ' )i jXRo Y  as a training set. For a given sample, classifier iS  assigns the confidences to 

the hypothesis that the sample belongs to a particular class (CLi). The confidences for 

each class CLi are calculated by the average combination methods. Classification of a 

given sample is done according to the class having the largest assigned confidence. 

Confidence for each class is given by the average combination method. Confidence for 

each class is given by the average combination methods as shown below. 

                            , ,
1

1
( ), 1,2,3,...

l

i i j i j
j

Co P XRo i C
l 

                                                (2.1) 

Where, , ,( )i j i jP XRo  is the probability of dataset belonging to the ith class. The sample 

will be assigned to the class having the highest confidence iCo . 

2.3.4 Random subspace 

 Ho [72] proposed the concept of random subspace to utilize the benefit of feature 

extraction for high dimensional data. In the Random subspace, base classifiers are 

trained with random sets of features extracted from training data. The final decision 

about the class label is taken by the majority voting rule. It is reported that the 

performance of Random forest is higher especially with the data having redundant 

features [72]. Random subspace paradigm can be implemented as given below. 

 Initially, extract random n-dimensional subspace Xi, from original m-

dimensional feature space X. 

 Train classifier ( )iC x  in iX .(i=1,2,3,4…m) 
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 Combine classifiers outcomes using simple majority voting to a final decision 

rule as given below. 
  sgn1, 1

arg max ( ( )),i iiy
C x yl 

 
   where 1

, 0{ i j
i j i j 

 is 

the Kronecker symbol, yl is the class label of the classifier.  

 

Figure 2.4 The generalized flowchart of the proposed ensemble methods for 

quantitative lithofacies modeling. 

  

2.3.5 Diverse ensemble creation by oppositional relabeling of artificial training 

examples (DECORATE)  

 Melville et al. [73] developed a new ensemble architecture based on the maximization 

of the data diversity concept. It has been verified that overall generalization error 

reduces with an increase in the training data diversity. In this ensemble approach, base 

classifiers are trained in iteration one after the other on the combination of training and 

diversity data. Diversity data samples are artificially generated at every iteration based 

on the data distribution of original data. The class labels are assigned to these artificial 

data samples to maximize diversity in the final results. At every iteration, a new base 
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classifier is trained with the combination of training and artificial data, however, the 

addition of this classifier depends upon a reduction in training error with an increase in 

classification accuracy of the ensemble. This ensemble continues its iterations until it 

reaches its stop criteria such as maximum ensemble size, the maximum number of 

iteration, etc. [73]. 

 

Figure 2.5 Political maps of the U.S.A. with the Kansas region and distribution of oil 

and gas wells [58].  

2.4 Data description 

2.4.1 Kansas oil and gas field  

The well-logs data utilized for the training and testing of ensemble classifiers is 

downloaded from the Kansas geological survey (KGS) website which is one of the 

largest data repositories provided for research purposes. Geological well-logs 
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downloaded from this website belong to single Paradise A well data (API:15-163-

24133) situated in the Kansas region of the U.S.A [58]. This well-logs data contains 

several samples having missing or garbage or null values that are removed through 

resampling operation. Nine lithofacies are considered in the training and testing datasets 

for the evaluation of ensemble classifiers. Total 2281 data samples were extracted from 

the downloaded las-file with the following lithofacies: clay, limestone, packstone, 

dolomite, dolomite mudstone, dolomite packstone, dolomite wackestone, silt,  

argillaceous clay [58]. These were acknowledged as class labels during the training and 

testing of well logs data. Figure 2.4 shows political maps of the U.S.A. with the Kansas 

region and distribution of oil and gas wells. 

Table 2.1 The statistical details of various well-logs data available in Paradise well [58] 

S. No. Input Parameters Minimum Maximum Units 

1. Depth (DT) 3200 3771 ft 

2. Caliper 1 (DCAL) 7.468 8.982 inch 

3. Density Porosity (DPOR) 0.652 32.118 pu 

4. Gamma Ray (GR) 16.781 414.152 API 

5. Neutron Porosity (NPOR) 0 44.143 pu 

6. Bulk Density Correction (RHOC) 0.01 0.296 gm/cc 

7. Deep Induction Resistivity (RILD) 1.905 65.158 Ohm.m 

8. Medium Induction Resistivity (RILM) 2.031 140.706 Ohm-m 

9. Deep Laterolog Resistivity (RLL3) 2.866 266.481 Ohm-m 

10. Spontaneous Potential (SP) -1.797 71.61 MV 

11. Acoustic Transit Time 1 (DT) 51.522 235.961 Usec/ft 

12. Micro Inverse Resistivity (MI) 0.609 41.818 Ohm-m 

13. Micro Normal Resistivity (MN) 0.138 44.097 Ohm-m 

14. Sonic Porosity (SPOR) 2.774 133.212 Pu 

15. Caliper 2 (MCAL) 6.947 8.911 In 

16. Acoustic Transit Time 2 (TT1) 54.36 662.885 Usec/ft 
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2.4.2  Performance evaluation indicators 

The performance of ensemble classifier is assessed through popular statistical indicators 

such as classification accuracy, true positive rate (TPR) or sensitivity, true negative rate 

(TNR) or specificity, Type-1 error, Type-2 error,  and area under the receiver operating 

characteristic curve (AUROC) as described in Table 2.2 given below. 

 

Table 2.2 The statistical parameters utilized for the analysis of the results of lithofacies 

identification. 

S. No. Performance indicator Descriptions 

1 TP+TN
Accuracy=

TP+FP+FN+TN
 

where TP is true positive, TN is true negative,  

FP is false positive, and FN is false negative. 

2 TP
Sensitivity(Recall)=

TP+FN
 

where TP is true positive, and FN is false 

negative 

3 TN
Specificity=

TN+FN
 

where TN is true negative and FN is false 

negative 

4 TP
Precision =

TP+FP
 

where TP is true positive, and FP is false 

positive 

5 FN
Type-1error=

FN+TN
 

Type-1 error (miss) is the probability of wrong 

samples being classified to a specific class, 

6 FP
Type-2 error=

TP+FP
 

whereas Type-2 error (false-alarm) is the 

probability of samples belonging to a specific 

class being categorized to the wrong class 

7 Area under ROC (AUROC) 

curve is calculated to 

measure the classification 

performance of a classifier. 

The Receiver Operating Curve (ROC) curve is 

a plot of True Positive Rate (TPR) versus False 

Positive Rate (FPR). 
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2.5 Results and discussion 

The performances of five ensemble methods were evaluated using Kansas well logs data 

along with six supervised classifiers namely, MLP, C4.5, NBC, Log R, CART, RBF, 

and SVM. Table 2.3 to 2.8 illustrates the classification results for ensemble methods in 

combination with seven base classifiers. Table 2.3 contains the individual performance 

of every base classifier considered in this study. The individual classification accuracy 

of SVM is higher than all the other base classifiers. These base classifiers can be 

arranged in the decreasing according to their performance as follow as SVM, C4.5, 

CART, LogR, MLP, NBC, and RBF as shown in Table 2.3.   

Table 2.3 Classification performance of the conventional classifiers for Kansas well-

logs data. 

S.No. Classifier Accuracy AUROC Sensitivity Specificity Precision 

1. NBC 71.2407 0.935 71.2 95.8 0.731 

2. MLP 73.0381 0.950 73.0 94.8 0.698 

3. LogR 86.1026 0.985 86.1 97.8 0.859 

4. RBF 56.5103 0.876 56.5 89.7 0.442 

5. CART 88.8207 0.972 88.8 98.4 0.889 

6. C4.5 89.6537 0.959 89.7 98.2 0.896 

7. SVM 90.925 0.947 90.9 98.5 0.909 

 

     Table 2.4 contains the average classification results of the Bagging ensemble in a 

combination with each base classifier considered in this study. C4.5 and CART have 

produced equivalent outcomes as shown in Table 2.4. Therefore, C4.5 and CART are 

equally efficient bases in the Bagging approach for quantitative lithofacies modeling. It 

is also inferred from Table 2.4 that SVM is the second effective base classifier with a 

slight decrease of 0.3946 % in its performance as compared to Table 2.3. LogR emerges 
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as the third effective base classifier, however, its AUROC performance is marginally 

superior to SVM. There is a major reduction in the enactment whereas the RBF 

classifier has produced the worst outcomes as compared to all the remaining base 

classifiers as shown in Table 2.4. 

Table 2.4  Average classification accuracy of ‘Bagging ensemble’ for Kansas well-log 

data. 

Base Accuracy AUROC Sensitivity/ 

recall 

Specificity Precision Type-I 

error 

Type-2 

error 

MLP 75.916 0.969 75.9 95.3 0.748 0.047 0.241 

NBC 71.3284 0.938 71.3 95.8 0.731 0.042 0.287 

LogR 85.6203 0.986 85.6 97.8 0.854 0.022 0.144 

CART 90.3113 0.988 90.3 98.5 0.904 0.015 0.097 

C4.5 90.3113 0.988 90.3 98.5 0.904 0.015 0.097 

RBF 57.431 0.880 57.4 90 0.555 0.100 0.426 

SVM 89.9167 0.978 89.9 98.2 0.899 0.018 0.101 

     Table 2.5  contains the performance of the Adaboost ensemble in the combination of 

base classifiers for the quantitative lithofacies modeling. The C4.5 is the frontrunner 

base classifier in the AdaBoost ensemble architecture for quantitative lithofacies 

modeling. It has provided the best performance in the AdaBoost ensemble as shown in 

Table 2.5. In AdaBoost, CART and SVM have given similar and second-best 

performance outcomes. MLP and  NBC remain relatively mediocre bases with 

AdaBoost ensemble for the classification of lithofacies, while RBF is performed as the 

inferior base classifier. 

 

 



42 
 

Table 2.5 The performance of ‘AdaBoost ensemble’ for Kansas well-logs. 

Base Accuracy AUROC Sensitivity/ 

recall 

Specificity Precision Type-I 

error 

Type-2 

error 

MLP 77.7291 0.954 77.7 95.7 0.740 0.043 0.223 

NBC 71.1092 0.876 71.1 95.8 0.727 0.042 0.289 

LogR 85.9711 0.927 86.0 97.8 0.858 0.022 0.14 

CART 90.5305 0.985 90.5 98.6 0.906 0.014 0.095 

C4.5 91.4073 0.987 91.4 98.6 0.914 0.014 0.086 

RBF 56.861 0.787 56.9 90 0.469 0.100 0.431 

SVM 90.5305 0.983 90.5 98.3 0.905 0.017 0.095 

 

Table 2.6 The performance of ‘Rotation’ for the classification of  Kansas field well-logs 

Base Accuracy AUROC Sensitivity/ 

recall 

Specificity Precision Type-I 

error 

Type-2 

error 

MLP 76.1947 0.966 76.2 95.4 0.743 0.046 0.238 

NBC 62.3849 0.916 624 94.5 0.646 0.055 0.376 

LogR 86.0149 0.985 86.0 97.8 0.858 0.022 0.14 

CART 88.9522 0.993 89.0 98.1 0.891 0.019 0.11 

C4.5 90.7497 0.966 90.7 85 0.908 0.15 0.093 

RBF 58.3516 0.900 58.4 90.3 0.516 0.097 0.416 

SVM 91.0566 0.975 91.1 98.4 0.911 0.016 0.089 

 

    Table 2.6 demonstrates the performance of the Rotation forest ensemble in 

combination with six base classifiers considered in this study for lithofacies modeling. 

SVM has appeared as the frontrunner base classifier. C4.5 has attained second place in 
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terms of its performance and average AUROC though CART moved to third place. The 

MLP and NBC remain mediocre performing classifiers with Rotation forest too, 

however, RBF is still the worse base classifier for the recognition of lithofacies. Table 

2.7 summarizes the performance of the Random subspace ensemble for geological 

lithofacies modeling of the Kansas oil-field well-logs data. Again, SVM has emerged as 

an effective base classifier with the Random subspace ensemble with the highest 

accuracy of 92.28% as compared to all base combinations experimented in this study. 

C4.5 has acquired the second performance metrics with Random subspace. CART 

acquired the third place in terms of classification performance shown in Table 2.7. 

LogR has given mediocre performance with Random subspace and can be placed at 

fourth place in the list of the suitable base classifier for lithofacies modeling. MLP, 

NBC, and RBF remain weak performers for the identification of lithofacies. 

 

Table 2.7 The performance of ‘Random subspace ensemble’ for Kansas oil field well-

log data. 

Base Accuracy AUROC Sensitivity/ 

recall 

Specificity Precision Type-I 

error 

Type-2 

error 

MLP 69.9693 0.967 70.0 37.0 0.755 0.63 0.3 

NBC 70.1447 0.929 70.1 95.3 0.729 0.047 0.299 

LogR 80.3157 0.973 80.3 96.5 0.804 0.035 0.197 

CART 89.6098 0.990 89.6 98.2 0.896 0.018 0.104 

C4.5 89.9605 0.992 90.0 98.2 0.899 0.018 0.1 

RBF 59.6668 0.909 59.7 90.5 0.543 0.095 0.403 

SVM 92.2841 0.990 92.3 98.7 0.923 0.013 0.077 

 

     Table 2.8 illustrates the performance of the DECORATE ensemble with its six 

different base classifiers. C4.5 has provided the best results in terms of overall 
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performance metrics. CART has provided the second-best results followed by LogR. 

The performance of SVM has been declined with DECORATE compared to its 

performance with all other ensemble methods. MLP, NBC, and RBF have emerged as 

poor performance base members with DECORATE for geological lithofacies modeling 

of the Kansas oil-field well-logs data. Figure 2.5 contains a confusion matrix for 

Random subspace classifiers which has achieved the highest accuracy in combination 

with SVM. It can also be observed that the overall classification accuracies of CART, 

C4.5, and SVM are in close competition with each other when used as a base classifier 

with ensembles, as shown in Tables 2.3-2.8. Figure 2.6 contains summary of results for 

ensemble methods to predict the geological lithofacies. 

Table 2.8 The performance of ‘DECORATE’ for the facies recognition of Kansas 

wells. 

Base Accuracy AUROC Sensitivity/ 

recall 

Specificity Precision Type-I 

error 

Type-2 

error 

MLP 73.0381 0.950 73.0 94.8 0.698 0.052 0.27 

NBC 71.2407 0.935 71.2 95.8 0.731 0.042 0.288 

LogR 86.1026 0.985 86.1 97.8 0.859 0.022 0.139 

CART 90.0482 0.987 90.0 98.5 0.901 0.015 0.1 

C4.5 90.7935 0.988 90.8 98.6 0.908 0.014 0.092 

RBF 56.5103 0.876 56.5 89.7 0.442 0.103 0.435 

SVM 83.779 0.904 83.8 97 0.837 0.030 0.162 
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Figure 2.6 Confusion matrix depicting overall classification accuracy of ‘Random 

subspace ensemble’ with SVM as a base classifier. 

 

Figure 2.7 Summary of results for ensemble methods to predict the geological 

lithofacies. 
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2.6 Summary 

Five ensemble methods have been trained and tested with six different base classifier 

combinations for quantitative lithofacies modeling. It has been observed that the 

performance of ensemble methods depends upon the behavior of the base classifiers. 

Base classifiers have shown improvement from their performance when applied in 

ensemble architecture. Most suitable ensemble-base combination found after 

comprehensive investigation are as follows: (a) Bagging-CART/C4.5, (b) AdaBoost-

C4.5, (c) Rotation forest-SVM, (d) Random subspace-SVM, and (e) DECORATE-C4.5.  

Random subspace –SVM combination has given the highest classification accuracy of 

92.28% as compared to all base combinations experimented. The analysis of results 

indicates that Ensemble methodology has a huge potential for lithofacies modeling. This 

study has motivated us to investigate other hybrid computational approaches such as the 

Random committee, Stacking ensembles, Voting ensemble, Bucket of models, 

cascading, Committee of machines, Clustering ensemble, etc. for their potential 

application in petroleum engineering. 
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Chapter 3  

A Comparative Study of Heterogeneous Ensemble Methods 
for the Identification of Geological Lithofacies 

 

3.1 Introduction 

Most of the unconventional reservoirs are located in mudstone lithology that forms a 

very peculiar hydrocarbon generation and storage system. These are the type of 

sedimentary rock that acts as a source, cap, and storage reservoir for hydrocarbon 

generation to accumulation. Mudstone lithology contains sweet spots that support 

hydrocarbon production due to the presence of rich source rocks [12]. The textual and 

mineralogical contents of mudstones have heterogeneous distributions that are not 

apparent [12].  Well-logs are mainly utilized for the identification of the subsurface 

lithofacies along with the depth through human experience. However, the manual 

interpretation of well-logs is a time-consuming, and costly task. It also requires domain 

expertise for its interpretation. Further, mudstone reservoirs have overlapping and 

complex lithology along with the depth of the reservoir formation which is difficult to 

interpret using conventional techniques (Figure 3.1). Therefore, more advanced 

techniques are required for automatic lithofacies modeling. 

     Most of the machine learning models, described for lithofacies modeling in the 

literature, are based on single supervised or unsupervised classifiers. However, it has 

been proved that the performance of single classifiers can be improved using hybrid 

computational models such as a multiple-classifier system, a committee of machines, 

composite systems, etc. [11] Multiple classifier systems, like ensemble methods, can 

excavate more valuable information from raw sensory data. It combines the decisions of 

several classifiers for classification and regression tasks. The ensemble approach can be 
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categorized into two types: (a) homogeneous ensemble methods (HoEMs) such as 

Bagging, Random forest, etc., and (b) heterogeneous ensemble methods (HEMs) such 

as Voting, Stacking, etc. HoEMs in feature space combine several hypotheses generated 

by the identical type of supervised classifiers which are utilized as base classifiers (e.g., 

a cluster of hundreds of SVMs). In the case of HEMs, different classifiers are utilized to 

generate and combine diverse hypotheses to achieve maximum possible prediction 

accuracy for the existing feature space. It has been proved that heterogeneity in base 

classifiers helps to develop more reliable, robust, and generalized classifier models [14]. 

Therefore, heterogeneous ensemble methods are found to be more efficient in handling 

complex, nonlinear, multidimensional, and imbalanced data as compared HoEMs 

[5,14]. However, these methods are not much explored for the processing of petroleum 

data.  

 

Figure 3.1 Variability of mudstone (a) Kimmeridge clay formation of Upper Jurassic in 

Dorset, England (b) Backscattered electron image of siliciclastic mudstone samples 

collected from the tip of the arrow shown in A [12].  

  

     In this chapter, two HEMs, namely Voting and Stacking, ensembles have been 

applied for the quantitative modeling of mudstone lithofacies using Kansas oil-field 

data. RF, gradient boosting (GB), SVM, and MLP have been incorporated as base 

classifiers in the applied HEMs architecture. A comprehensive comparison has also 

been performed among these classifiers for lithofacies identification. Multiple wells 
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data have been considered to achieve better generalized results for lithofacies modeling. 

Overall, the coming sections evaluate the pattern recognition ability of HEMs for 

multifarious mudstone lithofacies using multiple wells logs data. Figure 3.2 shows a 

conceptual architecture of Stacking ensemble for the identification of lithofacies. 

 

Figure 3.2 A conceptual architecture of Stacking ensemble for the identification of 

lithofacies. 

 

3.2 Stacked generalization ensemble 

Wolpert proposed the stacked generalization ensemble which is popularly known as 

Stacking [74]. It integrates the results of diverse supervised classifiers in its architecture 

as a base classifier. Dissimilar base classifiers quest the feature space with their varied 

viewpoints to discover the best possible hypotheses for a particular classification job 

[75]. It combines the results of base classifiers with a meta-classifier to deliver the 

ultimate classification outcome. The Stacking ensemble can also be generated by the 
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unification of the same base classifiers having varied parametric values. The choice of 

base and meta-classifier is always a matter of concern. The design of a suitable 

arrangement of classifiers in a large feature space is quite difficult. It has been proved 

that the Stacking ensemble helps to minimize the generalization error.  

 

Figure 3.3 A theoretical framework of Voting ensemble utilized for the lithofacies 

recognition task. 

 

     Stacking ensemble can also be created by merging the decision of similar base 

classifiers having different parametric values. The selection of base and meta-classifier 

combination is always a matter of concern during the design of stacking ensemble 

architecture. It is also difficult to design the most suitable configuration of classifiers in 

large feature space. Wolpert (1992) proved that the stacking ensemble is good in 

reducing the generalization error by decreasing bias and variance error associated with 

data. Initially, input data are split into training and testing datasets. Further, the training 
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dataset is again split into K identical subsets similar to K-fold cross-validation 

technique. Base classifiers are trained on (K - 1) subsets, while the Kth subset is retained 

as a validation set. After training with (K - 1) subsets, base classifiers are individually 

tested with the Kth validation subset and also with the testing data. The outcomes of 

each base classifier with validation and test datasets will act as new training and testing 

data for meta-classifier. Moreover, the meta-classifier will be trained with the prediction 

outcomes of the validation set and the actual values of the target variable. 

Algorithm 

Let us assume input:  ( , ) | ,i i i iX x y x y Y    

Output: Trained Stacking classifier  
Step1: Learn first level classifier 

For 1t  to T do 
Learn a base classifier Ct based on X 

Step 2: Construct new dataset from X 
For 1t  to m do 

Construct a new data set that contains  ,new
i ix y , where 

 ( ) 1new
i j ix C x for j to T   

Step 3: Learn the second level classifier  
Learn a new classifier Cnew based on newly constructed dataset. 

Return   1 2( ) ( ( ), ( )... ( ))new
TC x C c x c x c x  

 

3.3 Voting ensemble 

Voting ensemble also combines the diverse supervised classifiers for the pattern 

recognition task. It offers flexibility in the combination strategies for combining the 

results of base classifiers. However, voting never uses any paradigm for the 

combination of outcomes from base classifiers as in the case of Stacking. Two 

combination schemes are applied for the unification of the judgments of base classifiers, 

namely majority vote rule (hard voting) and average predicted confidence probabilities 

(soft voting) to forecast the class of test data [64]. In hard voting, class labels of test 

samples are decided by the majority voting rule. The final classification of the test data 

sample is decided by the maximum number of votes received by each class. The soft 
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voting strategy allocates weights to the individual base classifier. It produces prediction 

probabilities during the testing phase for every test sample belonging to a particular 

class. Further, these probabilities are multiplied with the weights then averaged. Test 

data samples are finally allocated into that class that attains the highest average 

confidence probability. This strategy allocates data samples as argmax (argument of 

maxima) of the sum of assigned probabilities [64-66]. Figure 3.3 shows the theoretical 

framework of the Voting ensemble used for lithofacies recognition. 

Algorithm 

Let us assume input:  ( , ) | ,i i i iX x y x y Y    

Output: Trained Voting classifier  
Step1: Learn first level classifier 

For 1t  to T do 
Learn a base classifier Ct based on X 

Step 2: Use same training dataset X 
For 1t  to m do 
Train new classifiers 

Step 3: Combine the classifier’s decision  
Use combination strategies to final decision   

Return   1 2( ) ( ( ), ( )... ( ))new
TC x C c x c x c x  

 

3.4 Data description 

 The well logs data were downloaded from the Kansas geological survey (KGS) website 

[76]. The digital “Las” files format contain 13,000 data from which 3425 data samples 

are mined related to nine lithofacies, namely dolomitic wackestone (DW) (1015), clay 

(CL) (320), dolomitic mudstone (DM) (240), dolomitic sandstone (DS) (455), siltstone 

(SS) (85), dolomitic packstone (DP) (265), carbonate mudstone (CM) (520), packstone 

(PS) (465) and wackestone (WS) (60). The above-said lithofacies are acknowledged as 

class labels for the classification of well logs data into their respective lithofacies. The 

downloaded “Las” files belong to Paradise A, Deforest, and Strahm wells existing in the 

Kansas field (Table 3.1 and Figure 3.4). 
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Table 3.1 The statistical description of input variables from well logs data. 

S. No. Well logs Minimum Maximum Units 

1. Depth (DT) 434 3771 ft 
2. Sonic Porosity (SPOR) 2.774 133.212 Pu 
3. Density Porosity (DPOR) 0.652 32.118 pu 
4. Gamma Ray (GR) 16.781 414.152 API 
5. Neutron Porosity (NPOR) 0 44.143 pu 
6. Bulk Density Correction (RHOC) 0.01 0.296 gm/cc 
7. Deep Induction Resistivity (RILD) 1.905 65.158 Ohm.m 
8. Spontaneous Potential (SP) -1.797 71.61 MV 
9. Deep Laterolog Resistivity (RLL3) 2.866 266.481 Ohm-m 

10. Caliper 1 (DCAL) 7.468 8.982 inch 
11. Micro Inverse Resistivity (MI) 0.609 41.818 Ohm-m 
12. Micro Normal Resistivity (MN) 0.138 44.097 Ohm-m 
13 Caliper 2 (MCAL) 6.947 8.911 In 
14. Acoustic Transit Time 2 (TT1) 54.36 662.885 Usec/ft 
15. Medium Induction Resistivity (RILM) 2.031 140.706 Ohm-m 
16. Acoustic Transit Time 1 (DT) 51.522 235.961 Usec/ft 

 

 

Figure 3.4 Well logs data of Paradise well existing in Kansas region of U.S.A. 
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3.5 Data-driven workflow for HEMs 

Additional preprocessing steps have been added before training and testing of different 

machine learning models for the lithofacies recognition. Intelligent modeling proposed 

in this research work is broadly classified into three stages viz. (a) Preprocessing stage 

(b) Model development stage and (c) Post-processing stage. Figure 3.5 contains a 

graphical framework of HEMs used for lithofacies. 

 

Figure 3.5 A generalized framework of HEMs for the identification of lithofacies.  

     In the preprocessing stage, the resampling of petroleum data was done to eliminate 

samples containing null, garbage, and missing values. After resampling, the input data 

were normalized to reduce the impact of larger values on the smaller values of predictor 

variables. Later, noise filtering of input well logs was done to minimize the effects of 

noise during the pattern recognition of lithofacies. Tewari et al. [77] studied the 

influence of noise levels on the classification performance of supervised classifiers and 

reported its damaging effects on the classification performance. Diaz et al. [78] also 

suggested that the preprocessing of petroleum data, viz. noise filtering, feature 

extraction, etc., before the pattern recognition task helps to improve the classification or 
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estimation accuracy of intelligent algorithms. Several denoising techniques are available 

in the petroleum and geophysics literature such as low pass filter, high pass filter, 

Savitzky-Golay filter, wavelets denoising, moving average, Gaussian, etc. High peaks 

of well logs data are considered as noise components that are generally eliminated using 

noise filters. Figure 3.6 shows denoising of four well logs using the SG filter technique. 

 

Figure 3.6 Denoising of four well logs using the SG filter technique. 

     After noise filtering, important data attributes were selected to decrease the 

dimensionality of data and eliminated redundant well logs. The high dimensionality of 

input logs data increases computational cost and time during pattern recognition of 

lithofacies.  This can be reduced by the selection of important attributes from input well 

logs data and removal of the redundant ones. Several attribute selection paradigms are 

available in the literature such as a forest of tree-based attributes selection, Univariate 

feature selection, Relief algorithm, etc. Relief algorithm has been primarily applied to 

select the attributes.  Figure 3.7 contains available well logs arranged according to their 

predictor important weights assigned by Relief algorithm for pattern recognition of 

lithofacies.  
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Figure 3.7 Available well logs arranged according to their predictor important weights 

assigned by Relief algorithm for pattern recognition of lithofacies.  

     The processed input petroleum data was further divided into training sets and testing 

sets using a cross-validation technique. There are three cross-validation techniques viz. 

k-fold, leave-one-out, and hold-out that are popular in the machine learning domain for 

the generation of training and testing datasets from input data. K fold cross-validation 

technique has been utilized in this research work for splitting the processed input data 

for training and testing of intelligent models (K=10). The 10-fold cross-validation (10-

FCV) technique has been reported to have minimum variance error as compared to 

other cross-validation techniques [79]. Cross-validation helps to minimize the chances 

of overfitting and underfitting of models [79]. The input well logs data were randomly 

partitioned into ten random sets of training and testing datasets during 10-FCV. 

Intelligent models are trained and tested on these ten datasets for learning the patterns 

hidden within the well logs and to predict the respective lithofacies. All the ten test 

outcomes of the learners are averaged to deliver overall final classification accuracy.  
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     During the training phase, the model parameters are determined and training errors 

are minimized with each iteration to obtain the best possible performance of intelligent 

models. The optimum value of the model’s parameters is essential to be determined 

during the training phase so that these models can be generalized for unseen data also. 

The model parameters were optimized using several tuning algorithms such as Grid 

search, Random search, Trust region, Simplex methods, Genetic algorithm, Particle 

swarm optimization, etc. These tuning algorithms have their advantages and limitations. 

     Machine learning models always have the possibility of getting overfitted or under-

fitted during pattern recognition. A separate validation score test was conducted to 

examine the overfitting and underfitting tendency of intelligent models. A validation 

curve was utilized to shrink the search range for various parameters. It clearly illustrates 

the overfitting and underfitting regions of the respective classifiers with a specific 

parameter variation. In an underfitting state of the intelligent model, training and 

validation scores are normally recorded to be low, whereas overfitting states result in 

high training and low validation scores. The parameter search range is primarily 

comprised of upper and lower constraints of a stable region. In a stable region, no 

dramatic variation in training and validation scores takes place. However, the model still 

needs an optimization algorithm that explores within the stable search range to find the 

best possible value of the model parameters. The search range and optimum values for 

various model parameters are depicted in Table 3.2. Figures 3.8 and 3.9 show the 

validation curves of GB and RF classifiers for four important parameters, namely 

Estimators, Min_samples_split, Max_depth, and Min_samples_leaf.  
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(a)      (b) 

 

(c)     (d) 

Figure 3.8 Validation curve of GB classifier to identify stable search range for four 

primary model variables (a) number of estimators (b) learning rate (c) minimum 

samples required at leaf node and (d) minimum samples required for splitting the 

internal node.  

     Figure 3.10 a, b shows the validation curves of SVM for regularization constant (C) 

and gamma (ϒ) versus accuracy score. The model with optimum parameters’ values is 

saved to classify unseen new data samples. The optimally tuned machine learning 

model was also tested on unseen data samples to evaluate its generalizability. The 

performance of optimally tuned intelligent models is evaluated on testing data using 

statistical parameters viz. coefficient of correlation, root mean square error, mean 

absolute error, recall, precision, F1 score, P-value, T-value, etc. Figure 3.5 shows a 

generalized conceptual workflow for the heterogeneous ensemble methods to recognize 

the subsurface lithofacies.   
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(a)      (b) 

 

(c)      (d) 

Fig. 3.9 Validation curve for RF classifier to identify stable search range for four 

primary model parameters (a) number of estimators (b) maximum depth of tree (c) 

minimum samples required for splitting the internal node. (d) minimum samples are 

required at the leaf node. 

 

                            (a)                                                                       (b)                                    

Fig. 3.10 Validation curve for SVM classifier to identify stable search range for two 

primary model parameters (a) penalty cost parameters for misclassified error samples 

(b) kernel coefficient of RBF. 
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Table 3.2 The search range and optimized values of model parameters obtained through 

Grid search algorithm on input well logs data.  

Classifiers Model Parameters Search Range Settings 

MLP Activation function Identity, logistic, tanh, relu relu 

 Solver Lbfgs, Sgd, Adam, Adam 

 alpha 0.00001-0.1 0.0001 

 Learning_rate_init 0.0001-0.1 0.001 

 Learning _rate Constant, invscaling, and 

adaptive 

constant 

 Max_iteration 10-400 200 

SVM C 1-1000 200 

 gamma 0.001-1 4 

 Kernel RBF, polynomial, linear RBF 

RF Estimators 10-1000 100 

 Max_depth 0-infinity 10 

 Min_samples_split 2-10 2 

 Min_samples_leaf 1-10 1 

GB Estimators 10-400 250 

 Max_depth 0-infinity None 

 Min_samples_split 2-10 2 

 Min_samples_leaf 1-10 1 

Voting Base classifiers Any supervised classifiers and 

HoEMs 

RF, GB, MLP, 

SVM 

 Weights 0.1-1 1,1,0.5,0.5,1 

 Voting Soft/hard hard 

 Combining 

strategies 

Simple/weighted majority 

voting 

Weighted 

majority voting 

rule 

Stacking Base classifiers Any supervised classifiers & 

HoEMs 

RF, GB, MLP,& 

SVM 

 Meta Classifier RF, GB, MLP & SVM GB 
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3.6 Results and discussion 

This section discusses the experimental results obtained during the recognition of nine 

mudstone lithofacies belonging to Kansas oil and gas fields. The performance of 

Stacking and Voting ensembles was compared with four popular classifiers, namely GB 

[80], RF [81], SVM [82], and MLP [30, 31]. Stacking and Voting are two HEMs that 

were implemented to predict complex lithofacies. Figure 3.5 depicts a generalized 

conceptual workflow for HEMs to predict the lithofacies of the formations. The 

performance of HEMs was tested by two separate data-driven experiments for the 

prediction of lithofacies. In the first experiment, 10-FCV was performed to split the 

input data samples into training and testing subsets so that generalized prediction 

outcomes can be obtained. The performance of each classifier has been reported in the 

form of precision, recall, and F1-score for individual lithofacies. Tables 3.3, 3.4, and 3.5 

show precision, recall, and F1-score acquired by HEMs and base classifiers for each 

lithofacies during 10-FCV. Overall, the classification performance of Stacking has been 

found higher than all the other classifiers considered in this study. The voting ensemble 

has secured second place in terms of overall classification performance as shown in 

Tables 3.3, 3.4, and 3.5. GB and RF classifiers have given similar performance scores 

for the identification of mudstone lithofacies as shown in Table 3.4. SVM classifier has 

also maintained good classification performance during 10-FCV for all the lithofacies. 

MLP becomes the worst performing classifier in terms of evaluation metrics, viz. 

average precision, average recall, and average F1-score, as shown in Table 3.6. It is also 

found that Voting, GB, RF, and MLP have fluctuations in their performances for 

smaller classes, namely SS and WS. However, Stacking and SVM classifiers are 

successful in maintaining their performances even for smaller classes as shown in 

Tables 3.4 and 3.6. Smaller classes have contributed a lesser number of data samples 



62 
 

during the training and testing of machine learning models. These classes also represent 

facies having thin layers that are difficult to identify using conventional well logs 

interpretation techniques. WS and SS facies are intentionally included with lesser data 

samples to magnify data imbalance conditions that make classification harder even for 

strong classifiers such as GB, RF, Voting, etc. Voting and Stacking ensembles have 

utilized the same base classifiers for the classification of facies; however, Stacking 

performed better than Voting due to the presence of a meta-classifier for combining the 

out-comes of base classifiers. 

      In the second experiment, a separate test was also performed with randomly selected 

training and testing data samples without 10-FCV. Table 3.6 depicts the overall 

performance of every classifier utilized in this study with processed input data split into 

(80%) training subset and (20%) testing subset. The testing accuracy for individual 

lithofacies is depicted diagonally in confusion matrices. Training and testing 

classification accuracies of HEMs are found higher than all other machine learning 

models utilized in this study as shown in Table 3.6. Naturally, subsurface layers exist 

inside the formations with uneven thickness and patterns. Therefore, uneven data 

distribution has been considered to represent real-field conditions. This also provides us 

an opportunity to understand the worst to best possible performance of machine learning 

classifiers for individual layers during imbalanced data conditions. The uneven data 

distribution is in particular chosen for this study to understand the effect of data 

imbalance conditions. Facies having lesser data points such as WS, SS, etc., are 

designed for magnifying data imbalance effects. Stacking ensemble has shown great 

potential to extract lithofacies information from well logs data even for smaller classes 

due to the presence of meta-classifier in its architecture. The Stacking ensemble has 

scored 83% accuracy for WS and 94% for SS which are challenging smaller lithofacies. 
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This research work is specially designed to evaluate worst- to best-case scenarios for 

lithofacies modeling. Layer wise classification accuracy of HEMs along with its base 

classifiers can be summarized as follows: (a) Stacking (67.9–95.8%), (b) Voting (58.3–

94.1%), (c) GB (58.3–94.1%), (d) RF (41.7–94.6%), (e) SVM (58.3–94.1%) and (f) 

MLP (0.0–88.7%).  

     In the case of data with high imbalance conditions, performance indicators (viz. 

accuracy, precision, recall, and F1-score) may give misleading results. Therefore, the 

testing performance of each classification model is also evaluated using the MCC 

parameter which is unaffected by data imbalance issues as shown in Table 3.6. It is 

found that MCC scores of applied models also justify their performance as shown in 

Table 3.6. DP has emerged as one of the most challenging subsurface rock layers during 

the testing phase. In this study, most of the time, all the classifiers have identified data 

samples related to DP as CM. It may be possible that the presence of calcareous mud 

inside DP has confused base classifiers with CM. This uncertainty may be removed by 

increasing the number of training data samples that will help in learning discriminatory 

features between similar layers (Figure 3.11). 
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Table 3.3 The performance of HEMs after 10 fold cross-validation for lithofacies 

classification. 

Staking ensemble Voting ensemble 

Facies Precision Recall F1-score Facies Precision Recall F1-score 

CL 0.77 0.86 0.81 CL 0.80 0.80 0.80 

CM 0.78 0.89 0.83 CM 0.76 0.87 0.81 

DM 0.92 0.96 0.94 DM 0.98 0.88 0.92 

DP 0.80 0.68 0.73 DP 0.86 0.60 0.71 

DS 0.87 0.85 0.86 DS 0.74 0.92 0.82 

DW 0.96 0.93 0.95 DW 0.95 0.94 0.95 

PS 0.93 0.83 0.87 PS 0.94 0.83 0.88 

SS 0.76 0.94 0.84 SS 0.8 0.94 0.86 

WS 1.00 0.83 0.91 WS 1.00 0.58 0.74 

Micro 

avg. 

0.87 0.87 0.87 Micro 

avg. 

0.86 0.86 0.86 

Macro 

avg. 

0.87 0.86 0.86 Macro 

avg. 

0.87 0.82 0.83 

Weighted 

avg. 

0.88 0.87 0.87 Weighte

d avg. 

0.87 0.86 0.86 

 

 

 

 

 

 

 



65 
 

Table 3.4 The performance of GB classifier and RF ensembles after 10 fold cross-

validation for lithofacies classification. 

GB classifier RF classifier   

Facies Precision Recall F1-score Facies Precision Recall F1-score 

CL 0.81 0.75 0.78 CL 0.79 0.75 0.77 

CM 0.74 0.87 0.8 CM 0.76 0.87 0.81 

DM 0.94 0.94 0.94 DM 0.98 0.85 0.91 

DP 0.85 0.64 0.73 DP 0.87 0.62 0.73 

DS 0.75 0.89 0.81 DS 0.73 0.9 0.81 

DW 0.93 0.95 0.94 DW 0.94 0.95 0.94 

PS 0.95 0.78 0.86 PS 0.89 0.80 0.84 

SS 0.78 0.82 0.8 WS 0.8 0.94 0.86 

WS 0.88 0.58 0.7 SS 0.83 0.42 0.56 

Micro 

avg. 

0.85 0.85 0.85 Micro 

avg. 

0.85 0.85 0.85 

Macro 

avg. 

0.85 0.8 0.82 Macro 

avg. 

0.84 0.79 0.8 

Weight

ed avg. 

0.86 0.85 0.85 Weighte

d avg. 

0.86 0.85 0.85 
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Table 3.5 The performance of SVM and MLP classifiers after 10 fold cross-validation 

for lithofacies classification. 

 SVM classifier MLP classifier   

Facies Precision Recall F1-score Facies Precision Recall F1-score 

CL 0.79 0.81 0.80 CL 0.38 0.33 0.35 

CM 0.80 0.90 0.85 CM 0.57 0.78 0.66 

DM 0.94 0.65 0.77 DM 0.70 0.67 0.68 

DP 0.83 0.74 0.78 DP 0.56 0.19 0.28 

DS 0.70 0.89 0.79 DS 0.52 0.73 0.6 

DW 0.97 0.94 0.95 DW 0.94 0.89 0.91 

PS 0.97 0.84 0.90 PS 0.78 0.78 0.78 

SS 0.8 0.94 0.86 SS 0.67 0.47 0.55 

WS 0.98 0.92 0.96 WS 0.0 0.0 0.0 

Micro 

avg. 

0.86 0.86 0.86 Micro 

avg. 

0.69 0.69 0.69 

Macro 

avg. 

0.87 0.85 0.85 Macro 

avg. 

0.57 0.54 0.54 

Weighted 

avg. 

0.86 0.86 0.87 Weighted 

avg. 

0.68 0.69 0.67 

 

Table 3.6 Classification accuracy of six machine learning models depicted on training 

(80%) and testing (20%) datasets for lithofacies classification.   

Classifier 
Base 

classifier 

Training 

Accuracy 

Testing 

Accuracy 

Avg. 

Precision 

Avg. 

Recall 
F1-score 

MLP --- 0.6892 0.6554 0.67 0.67 0.63 

SVM --- 0.9170 0.8403 0.86 0.87 0.87 

GB Decision tree 0.9105 0.8554 0.86 0.86 0.86 

RF Decision tree 0.9012 0.8481 0.86 0.85 0.85 

Voting 
MLP, SVM, 

RF, GB 
0.9230 0.8657 0.87 0.87 0.87 

Stacking 
MLP, SVM, 

RF, GB 
0.9278 0.8832 0.89 0.88 0.88 
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3.7 Summary 

A rigorous facies-wise comparison has been made between Stacking and Voting 

ensembles for the detection and identification of lithofacies. Stacking has shown nearly 

4% and 2% improvement in test accuracy as compared to SVM and RF. Four popular 

machine learning algorithms have been combined in HEMs as base classifiers to 

provide more accurate and generalized results. In this study, HEMs have combined 

MLP, SVM, GB, and RF classifiers to achieve better classification accuracy than their 

individual performances. The individual performance of the abovementioned classifiers 

has been evaluated using Kansas oil and field data with proper parameter optimization 

in their stable search ranges. The Stacking ensemble has shown great potential to extract 

lithofacies information from well logs data. The training and testing classification 

accuracies of HEMs have been found highest among the other classifiers used in this 

study. DP layer is found to be the most challenging facies among all the nine target 

lithofacies. The Stacking ensemble has given the highest individual identification 

accuracy for all the layers of lithofacies. Prediction accuracy of individual facies ranges 

from 67.9 to 95.8% (worst to best possible testing accuracy), and maximum overall 

accuracy is (training = 92.78% and testing = 88.32%) obtained for Stacking ensemble. 
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Chapter 4 

Intelligent Drilling of Oil and Gas Wells using Response Surface 
Methodology and Artificial Bee Colony 

 

4.1 Introduction 

The demand for hydrocarbons has been increased rapidly in the modern era. To meet 

the ever-growing oil and gas demand, unconventional reservoirs such as tight oil and 

gas reservoirs, shale gas, ultra-deep reservoirs, etc. are needed to be drilled in more 

challenging geological lithological conditions. These difficult geological rock 

formations require newer technological advancements for successful drilling operations. 

The use of the conventional drilling approach may result in higher overall drilling costs 

due to human errors. Thus, drilling parameters are needed to be optimized during 

drilling operations to achieve maximum efficiency.  

     Drill bits and ROP are the important drilling parameters that are needed to be 

optimized for the success of drilling operations due to their large impact on operational 

efficacy and cost. While optimizing the cost of drilling operations, selection of the most 

suitable drill bit types is one of the main concerns of driller as all other drilling 

parameters directly or indirectly rely on the drill bit, although the cost of bits only 5% of 

the total operational cost [83]. Selecting the right bit types for drilling operations is still 

one of the most challenging tasks due to its dependency on various factors. The 

performance of drill bits depends on various aspects such as bit design parameters, 

formation properties, and other operational field parameters [84, 85]. The concept of 

drilling optimization is built on the usage of earlier drilled well data for optimizing 

operational variables for drilling the next well with minimum cost and time [83]. The 

drilling variables are gradually adjusted to achieve their best possible effective optimum 
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values to decrease operational cost and time. Drill bits are mostly selected based on the 

knowledge of bit data of previously drilled wells and from the types of bits available to 

driller from manufactures. Driller selects the drill bits for new well depending upon his 

experience while drilling the earlier wells [83]. Drilling operations are also affected by 

various controllable and uncountable factors which involves a high risk of human error 

that may increase the cost of overall drilling operations [83]. Therefore, various 

empirical and data-driven models have been developed based on the known 

relationships between drilling variables to select the most suitable bit types. 

     Recently, data-driven intelligent models have been utilized to find suitable types of 

drill bits. These models are reported to be more accurate as they learn from previous 

well data, defying traditional methods for selecting the appropriate drill bit [24]. Bilgesu 

et al. [25] used Artificial neural networks (ANN) for the prediction of drill bit types for 

drilling target geological formations. Yilmaz et al. [26] trained the ANN model using 

previously drilled wells offset data and predicted the drill bits types for the development 

wells required to be drilled internally and externally of the same field. They also tested 

the trained ANN model for the prediction of drill bit types for the development wells 

that were required to be drilled in an adjoining field. Bahari et al. [15] utilized a Genetic 

algorithm (GA) for the accurate computation of constants for the Bourgoyne-Young 

ROP model. Edalatkhah et al. [27] also selected the suitable drill bit types using ANN 

and GA for South Pars Field wells. Momeni et al. [28] applied ANN for the estimation 

of drilling ROP and bit types [14]. Momeni et al. [29] combined ANN and Genetic 

algorithm (GA) for drill bit selection based on optimal ROP. They selected the drill bit 

types based on the optimum values of ROP and drilling variables. Abbas et al. [18] also 

supported the notion of drill bit selection depending upon optimum values of ROP using 
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ANN and GA. Here ANN was primarily utilized for the development of the objective 

function and GA for optimization of the ROP objective function to select the drill bit.  

     Various researchers have suggested the selection of drill bits should be performed 

based on the optimum values of ROP. This condition results in the development of an 

unconstrained bounded optimization problem where a function of ROP is required to be 

defined using drilling variables. However, the exact relationship between ROP and 

drilling variables is unknown and undefined that makes optimization of ROP a difficult 

task. According to Kolmogorov's theorem, multilayer feedforward perceptron (MLP) 

neural architecture can be utilized to define any continuous function in its 

approximation form [86]. The approximation function (objective function) requires an 

activation function and input variables that are predefined during the training of the 

MLP neural network. Three-layered MLP architecture can be expanded in a 

mathematical form with connection weights and bias of neurons that will act as 

coefficients of approximation function. This technique helps to solve real-field complex 

optimization problems, especially where the association between input and target 

variables is unknown such as bit selection based on optimum ROP values. In the case of 

complex approximation function, paradigms such as Ant colony, swarm optimization, 

GA, etc. can be implemented to retort the optimization problem as stated in the 

literature [87]. However, researchers reported several issues with ANN such as 

overfitting, underfitting, stuck up in local minima/maxima, lack of proper guidelines for 

the selected network architecture, [88]. This also opens the opportunity to investigate 

other techniques that can generate approximation functions to optimize ROP values for 

drill bit selection. 
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In this chapter, an alternative solution has been proposed for drill bit selection 

utilizing Response surface methodology (RSM) and Artificial bee colony (ABC) 

combination. RSM has been implemented to generate the objective function for ROP 

due to its strong data fitting characteristic. Further, the generated ROP function is 

optimized through ABC to acquire the optimal drilling variables and drill bit types for 

target geological formations. ABC is strategically designed to locate the global optimum 

value of any given objective function more efficiently in the high dimensional data 

space. The suggested approach has been compared with the earlier drill bit selection 

model based on ANN and GA combination. ANN tends to get stuck up in local minima 

consequently GA sometimes fails to converge when data become too much complex 

[87,88]. Therefore, the reliability of the ANN and GA combination is a major concern 

for drill bit selection. RSM has been reported to be a reliable and popular technique for 

solving optimization problems in various engineering domains [90,91]. Researchers 

have also reported that ABC is a superior evolutionary optimization paradigm that has 

outperformed GA in certain applications with faster convergence and lesser iterations 

[92,93]. This research work investigates the performance of the RSM and ABC 

combination as an alternative solution to substitute the ANN and GA combination 

model reported for optimum drill bit selection.  

 

4.2 Materials and methods 

In this study, RSM and ABC have been utilized to develop an alternative intelligent 

data-driven approach for the selection of suitable bit types. The performance of the 

existing ANN-based drill bit selection model has also been compared with the proposed 

approach to understand its pros and cons. The intelligent paradigms applied in this study 

are briefly explained below. 



73 
 

 

Figure 4.1 The architecture of the ANN investigated in this study. 

 

4.2.1 Artificial Neural Networks 

ANNs are a nature-inspired intelligent paradigm that is designed based on human brain 

cells. It is constituted of multiple information processing units known as nodes. The 

interconnected nodes combine to form a layer and layers combine to form neural 

networks. Neural nodes are also recognized as neuron units. Each neuron connection 

has been associated with weights that are attuned during the training to generate 

approximation function to minimize error for classification or estimation tasks. 

Generally, ANN comprises multilayers structure viz., input, hidden, and output layers 

[86,87]. However, hidden layers may vary in number depending on the complexity of 

training data. Initially, the field data are provided to the input layer which further 

transmits the raw data to hidden layers for their processing. The results acquired after 

processing in hidden layers are directed to the output layer where predicted results are 
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compared with actual target values. The deviation of prediction values from actual 

targets is provided as feedback to the model for updating associated weights and biases. 

The number of neurons and hidden layers may vary according to the complexity of 

problems and data types. ANN is primarily developed for handling classification and 

regression tasks, however, they are also applied for solving optimization problems. 

Figure 4.1 depicts the architecture of the ANN utilized in this study.   

Kolmogorov’s theorem stated that multilayer feedforward perceptron (MLP) neural 

architecture can be utilized to define any continuous function in the form of an 

approximation function [86, 87,94]. There exist two stages in the MLP network namely, 

the learning stage and the prediction stage. Several neural network parameters are 

predetermined to define neural networks such as the number of neurons, number of 

layers, propagation rules, connections between neurons, activation function, learning 

rate, etc. The propagation rule in MLP is the weighted sum of inputs which are given 

below.  

                                              
1

( )
M

mn m n
m

w x t 


                                                        (4.3) 

where wmn is the connection weights associated with neuron m in the input layer and 

neuron n in the hidden layer, xm is the outcome from neuron m in the input layer where 

M is input layer neurons, t is the associated patterns and n  neuron bias. The activation 

function will be multiplied with equation (4.3) to decide whether neurons should be 

activated or not. There are several popular activation functions used in neural networks 

such as sigmoid function, hyperbolic tangent function, Softmax function, Softsign, 

Rectified linear unit, Exponential linear units, etc. The outcome from the Kth neuron 

with activation function existing in the input layer is given below. 
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                                        (4.4) 

Applying the propagation rule twice due to the three-layer architecture of MLP to 

transmit the values from the input to the output layer. Neurons in the output layer are 

considered as N. The result of the Kth output neuron is presented below. 
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                                          (4.5) 

Substituting equation (4.4) in equation (4.5), the outcome of the Kth neuron can be 

rewritten as given below. 
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                                    (4.6) 

Equation (4.6) of MLP is utilized to approximate the objective function in optimization 

as given in equation (4.7). 
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              (4.7)  

                                              Constraints 1 1 2(x ,x ,........x ) 0MC                                                        

                                                                  1 2(x ,x ,........x ) 0n MC                                                       

Equation (4.7) acts as the objective function and constraints for optimization problems 

where the relationship between input and response variable is undefined. In the case of 

complex approximation functions, algorithms such as Ant colony, Particle swarm 

optimization, ABC, GA, etc. can be applied to retort the optimization problem. 

4.2.2. Response surface methodology 

RSM is a set of statistical techniques that are quite helpful in optimizing, developing, 

and improving processes and useful in analyzing and modeling numerous problems in 

engineering [95,96]. RSM is particularly useful in real-world situations where various 
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variables affect the performance, quality, and output of the desired process as in the case 

of drilling operations [96]. The target variable (Y) is termed as the response variable 

while input variables are known as independent variables. An appropriate relationship 

can be identified between input and response variables using RSM. RSM helps to 

develop the correct approximate mathematical function which satisfies a suitable 

relationship between the objective function and test factor group [96]. Interaction 

between the input variables can also be included in the response surface equation. The 

generalized relationship can be developed as given below. 

                                        n(X ) 2y f e                                                                 (4.8) 

where, f is the unknown exact response function which may be complex. ‘e’ is the error 

due to unaccountable factors, such as noise, interaction effects, etc., that influence the 

response or output but are never included in the equation (4.8). Let ‘e’ be the statistical 

error which is distributed normally with variance 2 , and zero mean. Then, the error 

equation can be written as given below. 

                  1 2[ ] [ (X )] [ ] (x , x , ... x )n nError Y Error f Error e f                   (4.9) 

where, 1 2, ,... nx x x are known as natural variables in their natural units. Further, these 

variables are changed into coded variables that are dimensionless and have zero mean 

and alike standard deviation. The coded form of equation (4.9) can be written as given 

below. 

                                                   1 2( , ,... )nf x x x                                                          (4.10) 

Here, function f is known and undefined. Thus, a suitable approximation function is 

required to be generated for modeling purposes. In RSM, the first or second-order 

polynomial equation is primarily generated as approximation functions in place of the 

actual response function. The second-order model is popularly applied for modeling 
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various process operations due to its flexibility, diverse functional form, efficient 

approximation, and model coefficients that can be easily estimated through the least 

square estimation technique. A second-order response surface equation, based on Talyor 

series expansion, can be used as given below. 

                 2
0

1 2

n n n

T i i ii i ij i j
i i i j

y i x x x x    
  

                                      (4.11) 

where xi and xj represent the input parameters, b0 is the constant of the regression 

equation, Y is the predicted ROP response, i  is the linear coefficients, ij  are 

interaction coefficients, ii  are the coefficients of the square terms, and   is the fitting 

error in the equation. To generate a response surface, Stepwise regression methods are 

utilized to reduce the computational burden. 

 

Figure 4.2 The layout of face-centered design (alpha=1) for CCD. 

Here, center composite design (CCD) has been considered for developing a second-

order approximation function for ROP as shown in equation (11). The input variables 

are converted into coded variables for fitting the data in CCD between two levels [-1, 

1]. CCD contains the factorial point, central point, and axial points which are mostly 

developed through sequential experimentation as shown in Figure 4.2. Ten factors and a 
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full factorial design were utilized for the development of the response function. The 

range of design factors was assigned according to the range of field variables. The 

interaction, quadratic and linear coefficients were estimated through the least square 

regression. Further, the importance of each term was determined through an analysis of 

variance (ANOVA) test whereas redundant terms were eliminated. Equation (4.11) will 

act as an ROP objective function (approximation function) for the target geological 

formations containing bit information as an input variable similar to ANN. Further, this 

equation will be optimized using an Artificial bee colony to find the optimum value of 

ROP along with its input variables (control variables) including BT. A comprehensive 

explanation of RSM is available in the cited literature [95,96]. 

4.2.3. Artificial bee colony  

Karaboga [97] proposed an Artificial bee colony (ABC) paradigm based on the natural 

behavior of bees when they search for flowers with nectar. There are three variations of 

honey bees generally present in natural hives namely, onlookers, employed bees, and 

scouts. Every bee has an assigned duty that is required to perform. The scout bees 

perform a random hunt for the flowers having nectar in their nearby environment and 

remember the location of the flower inside their internal memory [97,93]. This means 

scouts examine local search feature space for optimal solutions and remember it. After 

returning to their hive, scouts exchange information about flower locations with other 

bees using the waggle dance technique [93]. After the waggle dance, employed bees 

begin their exploration for the nectar having flowers depending upon the information 

achieved from scouts bees. The employed bees extract the nectar from the target flowers 

which are known as food sources [93]. Only one employed bee will be assigned to a 

single flower to exploit their nectar. Thus, each available food source contains an 

assigned employed bee that creates an initial solution [93]. The value of each solution is 



79 
 

calculated to understand its’ significance. A new response is generated for each problem 

solution using the relationship as given below. 

                                   , , , , ,(S )i j i j i j i j k jB S S                                                     (4.12) 

                             1,2,...i IA ,    1,2,...Oj ,  1,2,...k IA and k i                 

Where, ,i jS  is parameter j obtained from response i, ,i jB  is the parameter j in the new 

response where i represents the number of solutions, ,i j  is an arbitrary number 

existing between [-1,1], k is a random number from a single answer to the problem, IA 

signifies initial solutions to the given problem, and O is the total number of parameters 

required during optimization. After calculating a new answer for each solution, they are 

compared with the previous answer. If the difference is found to be higher between the 

current and earlier answer, only then it will be accepted otherwise rejected [93]. The 

step length is adaptively decreased according to the difference between current and 

previous answers as the search reaches closer to the optimal solution. The waiting 

onlooker bees in the hive choose the best source depending upon the dance of employed 

bees. This helps in identifying the global solution existing in the search space along 

with local solutions [93]. Further, employed bees of an abandoned food site start to 

behave like scout bees and hunt for newer sources of food. The probability of selection 

of source through an onlooker bee can be expressed as given below. 
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                                                      (4.13) 

where ifitness  represents the fitness of the solution i examine via employed bee 

depending upon nectar quantity at location i, and FS is the number of the food source. 

After predefined iterations, there is no improvement in answer value using equation 

(12), then the employed bees convert into scouts and randomly begin the search for a 
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newer source of food. ABC algorithm has been utilized for solving various engineering 

problems such as ROP optimization [98], oil and gas well placement optimization [99], 

over break prediction in the tunnel [100], etc. A detailed description of ABC 

optimization can be found in other references [101,102]. Figure 4.3 depicts the 

flowchart of the Artificial bee colony paradigm that was originally proposed by 

Karaboga [97]. Figure 4.4 shows the generalized schema of the proposed approach of 

drill bit selection. 

 

 

Figure 4.3. Flowchart of the artificial bee colony paradigm [96]. 
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Figure 4.4. A generalized schema of the proposed approach for drill bit selection. 

 

4.2.4. Data Description  

Volve oil and gas field is situated in the central North Sea near the Norwegian 

Continental Shelf. It was discovered in 1993 and its production shut down in September 

2016 by its investors' companies. The ocean depth near the Volve field is in a range of 

85 to 95 meters. This field contains Jurassic sandstone related to the Hugin formation 

reservoir. The depositional environment of this reservoir is analyzed as tidal to the 

shallow estuary. The average properties expected from this Hugin reservoir are as 

follows: porosity (0.2), permeability (910), water saturation (0.23), and shale volume 

(0.17). Geosteering was particularly utilized to increase the extent of the reservoir 

linking to various fault blocks. The peak production rate in the Volve field was recorded 

to be 56,000 barrels per day and produced a cumulative amount of 63 million barrels of 
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oil with a recovery rate of 54% of the total reservoir estimated over 8 years [103]. Input 

data used in this research work were obtained from the Equinor company website 

openly available for research purposes [103]. Table 4.1 contains the geological 

prognosis of the Volve field. Table 4.2 contains a description of the drilling variables 

used in the study. Table 4.3 has been provided to inform about different drill bit types 

(I.A.D.C. code) utilized for drilling the three wells. Wells A (F-4) and B (F-15) were 

utilized for the training of models and well C (F-12) for testing the developed models. 

The I.A.D.C. code of drill bits cannot be utilized directly for the training of the ANN 

model. Thus, they are numbered in the bit-type column of Table 4.3. The location of the 

Norwegian Volve field situated in the North Sea is depicted in Figure 4.5. 

 

Table 4.1 Geological prognosis of well 15/9-F-12 under study (courtesy: Equinor 

company) [103]. 

Group Formation Depth (m) Description 

Nordland Utsira Top 892 Grey claystone, a stringer of sand and siltstone. 

 Utsira Base 1084 Well sorted sandstone, minor silt, and 

limestone stringers. 

Hordaland Skade Top 1259 Claystone, minor limestone/dolomite stringers.  

 Skade Base 1347 Medium-grained sorted sandstone. 

 Grid Top 2179 Fine-grained sandstone. 

 Grid Base 2245 Fine-grained sandstone. 

Rogaland Balder Top 2317 Colored claystone, partly tuffaceous, and 

limestone stringers. 

 Sele Top 2374 Claystone and limestone stringer. 

 Lista Top 2445 Non-calcareous claystone and minor limestone 

stringers. 

 Ty Top 2531 Fine to medium sandstone some interbedded 

claystone, siltstone, and limestone stringers. 

Shetland Ekofisk Top 2698 Limestone with traces of claystone and 
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sandstone. 

 Tor Top 2715 White limestone with traces of claystone. 

 Hod Top 2839 Limestone along with gluconate. 

 Blodoeks Top 2944 Marl, argillaceous laminations, and gluconates 

in parts. 

 Hidra Top 2972 Off-white firm limestone. 

Cromer 

Knoll 

Roedby Top 2981 Marl along with argillaceous laminations 

 Aasgard Top 3001 Interbedded limestone and marl with minor 

claystone and siltstone. 

Viking Draupne Top 3036 Organic-rich claystone, micaceous, 

carbonaceous with traces of pyrite. 

 Heather Top 3086 Claystone with limestone stringers. 

Vestland Hugin Top 3094 Sandstone and rare claystone stringers. 

 Sleipner Top 3266 Sandstone, grey claystone, and layers of coal. 

*Table showing different formations for F-12 well along with depth of the reservoir 

Table 4.2. Statistical details of drilling data used in this study. 

S. No. Parameters/unit Range Units Code Factor 

1.  Measured Depth (DT) 100-3520 m x1 

2.  Rate of Penetration (ROP) 1.73-201.02 m/hr -- 

3.  Weight on bit (WOB) 0.01-19.17 Tons x2 

4.  Rounds per minutes (RPM) 60-220 rpm x4 

5.  Torque (TQ) 0-5.24 kN/m x3 

6.  Standpipe pressure (SPP) 58.6-289.2 Bar x5 

7.  Mud weight (MW) 1.03-1.42 S.g. x6 

8.  Inclination (IN) 0.46-54.95 Degree x8 

9.  Azimuth (AZ) 0.38-334.67 Degree x9 

10.  Bit type (BT) 1-11 N/A x10 

11.  Bit Size (BS) 8.5-26 Inch x7 
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Figure 4.5. Location of Volve oil and gas field in the North Sea [103].  

 

Table 4.3. Drill bit types utilized for drilling of wells at different depths for three 

Norwegian Volve field wells. 

Bit Type Depth In (m) Depth out (m) IADC code Bit Size (Inch) 

WELL A (F-4)     

1 100 310 PDC M415  36” 

2 25 1360 MT 115A 17.5” 

7 1360 1410 PDC M422  12.25” 

8 2770 2993 PDC M222 8.5” 

8 2993 3510 PDC M222  8.5” 

Well  B (F-15)     

10 144 226 MT 115  36” 

6 226 1378 PDC M115 26” 

3 1378 1381 MT 244 17.5” 

4 1381 2536 PDC M332  12.25” 

9 2536 3670 PDC M323  8.5” 

9 3670 4090 PDC M323  8.5” 

5 1378 2591 PDC M322  26” 

4 2591 2594 PDC M332  12.25” 
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5 2591 2596 PDC M322 8.5” 

5 2596 3180 PDC M322 8.5” 

5 3180 4095 PDC M322 8.5” 

5 3185 3498 PDC M322 8.5” 

7 2562 2665 PDC M422  12.25” 

7 2665 2920 PDC M422  12.25” 

WELL C (F-12)     

1 251 1369 PDC M415M  36” 

5 1369 2513 PDC M322 17.5” 

6 2513 2573 MT 135  17.5” 

7 2573 3114 PDC M422  12.25” 

8 3114 3520 PDC M222 8.5” 

 

Table 4.4. The reported relationships to calculate the neurons inside the hidden layer of 
ANN. 

Relationships References Relationships References 
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0 0 0
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[109] 2 iN   [112,113] 

 

4.3 Results 

4.3.1 Development of ROP objective function using ANN 

In this study, three-layered MLP architecture was utilized to generate an approximation 

function for the ROP in terms of operational drilling variables. ANN having a three-

layered multilayer perceptron architecture can be utilized to produce the polynomial 

equation for solving optimization problems [87]. However, parameters of ANN are 

required to be determined beforehand during the training stage. Three popular training 

functions were applied to train the ANN namely, (a) Levenberg-Marquardt (LM), (b) 

scaled conjugate gradient (SCG), and (c) Bayesian regularization (BR). Hornik et al. 
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(1989) suggested that a singular hidden layer neural network model can be utilized for 

approximating any nonlinear function [104]. However, the optimum neurons in the 

hidden layer are required to be estimated before training the ANN model. Table 4.4 

contains reported correlations to decide the number of neurons inside the hidden layer. 

Ni and No represents the number of predictor and target variables in Table 4.4. Several 

ANN models were generated with the neurons ranging from 2-20 which were calculated 

using the correlations available in Table 4.4. The optimum values of the model 

parameters are given in Table 4.5. The performance of developed ANN models is 

compared based on the coefficient of correlation (R2) and root mean square error 

(RMSE) as mentioned below. 

A. Coefficient of correlation (R2):   
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B. Root mean square error (RMSE): 
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                                       (4.15) 

Zorlu et al. (2008) suggested a ranking method to compare the performance of 

several neural networks together [105]. Here, an integer (rank) was allocated to every 

network based upon the goodness of R2 and RMSE values. Then, ranks allocated to 

every R2 and RMSE were added to acquire the total rank for every network 

configuration separately. The network having the highest total rank was considered as 

the best model for this research work [105,106]. The results of three-layered neural 

architectures with three different combinations of training functions are recorded in 

Tables 4.6, 4.7, and 4.8. The training algorithm LM has acquired the highest rank of 36 
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through its performance with (10-18-1) configuration. Therefore, the best performing 

ANN (10-18-1) alignment was considered for the development of the approximation 

function to obtain optimum values ROP and BT along with other drilling variables.  

 

Table 4.5 Optimum values of model parameters utilized in this research work. 

Estimators Model Parameters Search Range Optimum value 

ANNs Configuration 2-20  [10 18 1] 

 Learning rate 0.0001-0.5 0.0001 

 Maximum number of 
iteration 

100-1000 200 

 Activation function hidden 
layer 

Tangential sigmoid function N/A 

 Activation function output 
layer 

purline function  

 Training algorithm Levenberg-Marquardt  N/A 

ABC Iterations 10-200 100 

 Scouts 1-100 70 

 Colony size 1-100 100 

GA Iterations 1-5000 3000 

 Crossover probability 0.1-1 0.5 

 Population size 1-200 100 

 Crossover type - Uniform 

 Elit_ratio 0.001-1 0.001 

 Parents portion 0.1-1 0.3 
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Table 4.6 The outcomes of ANN models trained using the LM function*. 

Model 

No. 

No of 

Neurons 

Train 

R2 

Train 

RMSE 

Test 

R2 

Test 

RMSE 

Train 

rating R2 

Train 

Rating RMSE 

Test 

Rating R2 

Test 

Rating RMSE 

Total Rank 

1  2 0.793 11.76 0.597 20.414 3 3 1 1 8 

2  4 0.640 16.20 0.634 16.233 1 1 2 2 6 

3  6 0.839 10.94 0.720 14.975 4 5 3 4 16 

4  8 0.894 9.283 0.850 8.298 6 6 9 10 31 

5  10 0.843 11.18 0.801 10.475 5 4 6 8 23 

6  12 0.930 6.930 0.831 13.635 9 8 8 5 30 

7  14 0.908 8.332 0.761 11.786 8 7 4 7 26 

8  16 0.952 6.319 0.825 16.392 10 9 7 3 29 

9  18 0.9143 7.99 0.855 10.32 7 10 10 9 36 

10  20 0.734 14.59 0.774 12.916 2 2 5 6 15 
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*Table 4.6 shows the ranking method for selecting the optimum number of neurons for 

the hidden layer. Here, 18 neurons have achieved the highest total rank of 36 by 

summing all the training and testing ratings together for the LM training function. The 

results are also compared with the total rank achieved in Tables 4.7 and 4.8 to decide 

the optimum neuron configuration in the hidden layer. 

 

Table 4.7 The outcomes of the ANN models trained using SCG function. 

No of 

Neurons 

Train 

R2 

Train 

RMSE 

Test 

R2 

Test 

RMSE 

Train 

Rating 

R2 

Train 

Rating 

RMSE 

Test 

Rating 

R2 

Test 

Rating 

RMSE 

Total 

Rank 

2 0.723 14.82 0.675 16.430 4 4 4 4 16 

4 0.767 12.71 0.804 12.901 8 8 2 9 27 

6 0.558 19.32 0.648 16.520 1 2 2 3 8 

8 0.710 14.30 0.673 14.263 3 6 3 7 19 

10 0.685 16.34 0.600 14.340 2 3 1 6 12 

12 0.764 13.88 0.816 11.778 7 7 9 10 33 

14 0.814 12.37 0.756 13.538 10 9 7 8 34 

16 0.734 14.36 0.745 14.609 5 5 6 5 21 

18 0.802 12.12 0.733 16.851 9 10 5 2 26 

20 0.757 210.75 0.869 115.82 6 1 10 1 18 
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Table 4.8. The outcomes of the ANN models trained using the BR function. 

Model 

No. 

No of 

Neurons 

Train 

R2 

Train 

RMSE 

Test 

R2 

Test 

RMSE 

Train 

Rating 

R2 

Train 

Rating 

RMSE 

Test 

Rating 

R2 

Test 

Rating 

RMSE 

Total 

Rank 

1 2 0.855 10.84 0.714 13.376 1 1 3 8 13 

2 4 0.890 8.90 0.819 13.520 2 3 7 6 18 

3 6 0.927 7.58 0.751 13.375 3 4 5 9 21 

4 8 0.9281 6.94 0.864 13.473 4 5 9 7 25 

5 10 0.946 6.492 0.762 14.476 6 6 6 4 22 

6 12 0.946 6.359 0.907 10.059 6 7 10 10 33 

7 14 0.965 5.131 0.547 19.724 8 9 1 2 20 

8 16 0.960 5.37 0.820 14.157 7 8 8 5 28 

9 18 0.973 4.416 0.715 19.234 9 10 4 3 26 

10 20 0.986 9.907 0.562 28.045 10 2 2 1 15 

 

Figure 4.6 contains the Regression plot, MSE plot, and Error plot of optimal ANN 

architecture [10-18-1]. Table 4.9 contains weights and bias associated with the selected 

neural network configuration (10-18-1). The developed ROP approximation function 

using equation (4.7) is given below. 

                                                    2,i 22
1

1
f( ) 1

1

N

Z
i

x w b
e

  
    
      
                                          (4.16) 

,1 1 ,2 2 1,3 3 ,4 4 ,5 5 ,6 6 ,7 7 ,8 8 ,9 9 ,10 10( )i i i i i i i i iz w x w x w x w x w x w x w x w x w x w x                   
 

where the tangent sigmoid function is utilized in the hidden layer, while purline is the 

activation function for the output layer. wi,1, and w2,i are the weights of input and hidden 
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layers. The weights and bias (obtained during the training of 10-18-1 ANN 

configuration) associated with the equation (4.16) have been provided in Table 4.9. 

Table 4.10 contains constraint bounds required for the optimization of the ROP equation 

(4.16) and control variables. Here, TD, IN, and AZ will remain constant because of their 

predefined nature while optimizing for a particular depth. 

Drill bit selection based on optimum ROP values is a bound constrained 

maximization problem. The developed ROP objective function (equation 4.16) requires 

an optimization algorithm for determining optimum values of ROP and other 

operational variables along with BT. GA is an evolutionary paradigm that has been 

utilized for the optimization of equation (4.16) [106]. During the optimization process, 

equation (4.16) was maximized using GA with upper and lower bounds as shown in 

Table 10 according to the following steps. (a) Adjust the model parameters of GA. 

(maximum no of iterations = 3000, crossover probability = 0.5, population size = 100, 

parents portion = 0.3, crossover-type = uniform, elite ratio = 0.01, variable type = real). 

(b) Set the upper and lower bounds for input variables existing in objective equation 

(16) using Table 10. (c) Randomly generate the initial population for GA. (d) Several 

combinations of ROP and input variables will be generated during optimization. In the 

end, GA converges on the best combination of input variables having maximum ROP 

value. (e) Record the value of ROP and BT in the final solution produced by GA. GA 

will provide optimum ROP values along with suitable BT and other control variables. 

The optimization of the ROP objective function (equation 4.16) has been carried out 

using the Python package Geneticalgorithm 1.0.1 freely available online for research 

purposes.  
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(a) 

 

                                                  (b)                                                   (c)                    

Figure 4.6. The prediction performance of optimal ANN architecture [10-18-1] for 

developing ROP objective function (a) Regression plot, (b) MSE plot, and (c) Error 

plot. 
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Table 4.9 The weights and bias allocated to the training of optimal ANN configuration 

[10-18-1]. 

Connections Generated Values 

Bias in hidden layer -2.331; -2.775; -0.1308; -0.03132; 1.504; 0.2345; 2.2617; -

1.5475; 1.1458; 0.3785; -0.0855; 0.3141; -1.0727; -2.2302; 

1.8623; -2.6596; -1.85; 2.721 

Connection weights 

between 

input and hidden layers 

-0.486; -2.186; 0.151; 1.236; 1.964; 0.920; -0.5052; -0.677; 

0.008; 0.570; 1.202; -0.577; 0.269; -2.421; 0.145; -0.654; -

0.664; -2.189; 1.061; 0.126; 1.048; 1.962; -0.479; -0.984; -

1.578; 0.542; -1.061; -0.900; -0.856; 0.401; 0.108; -0.469; -

1.358; -0.818; 0.037; 0.413; 0.484; -1.092; -1.283; 0.109; -

0.444; -1.698; -3.35; 0.353; -0.194; -0.038; -0.431; -0.647; -

0.0049; -0.225; 0.266; 0.517; -0.0142; 1.035; 0.456; -0.271; 

0.6465; -0.568; 1.96; -0.423;-0.594; -0.981; 0.441; -0.363; -

0.293; -0.0681; -0.313; -0.996; -2.33; 1.21; -1.033; -0.649; 

1.68; -0.859; 0.426; 0.880; -0.425; -1.456; -1.231; 0.436; -

1.234; -1.301; 1.712; 1.96; 1.55; 0.53; 1.17; -1.79; 0.66; -

0.093; -2.81; 1.47; -1.103; -0.346; -3.252; 0.403; -0.52; 

0.426; -1.246; 0.8551;-0.721; -3.845; 0.619; 0.902; 1.909; -

0.7886; 0.271; 1.015; -3.98; 0.366;-0.101; -1.257; 2.83; 

1.017; 1.185; -0.150; -0.0382; -2.389; -0.740; -1.086;-

1.868;-0.573; -0.689; -0.337; -1.414; 1.336; 0.797; -0.853; -

2.783; -0.484; -0.252; -1.243; 1.548; 1.508; 0.047; -0.109 ; 

0.699; 0.56544; -0.317; -0.452; 1.35; -0.1153; -0.661; 1.076; 

0.436; 0.986 ;0.55;0.5131; -1.026; -0.5348; -0.1402; 0.156; -

0.5217; -0.6648; 1.3074; 0.0939; -0.822;-1.814;-0.092; 

1.22;0.242 ;-1.53;1.24;-1.493; 0.112; -0.68; -0.342; 0.62; 

0.451; -0.179; -1.14; 3.38; 0.66; -0.351; -0.017; 0.098; -

0.433; -1.99; -1.40; -0.112 

Bais in the output layer -0.7816 

Connection weights 

between 

hidden and output layers 

-0.264; -1.214; 0.0348; -0.701; 0.319; 0.410; 0.1114; 0.421; 

0.5133; -0.4028; 0.1325; -0.5300; 0.785; -0.475; -0.765; 

0.434; 0.376; -0.133 
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Table 4.10. Range of predictor variables utilized during optimization of ROP as upper 

and lower bounds. 

Depth Interval (m) Predictor variables utilized during optimization 

251-1369 

DT = constant, BT = [1, 10], BS = constant, WOB = [0.01, 

16.29], RPM = [83, 220], TQ = [-0.15, 15.26]. 

MW=[1.03,1.36], IN=constant, AZ=constant, SPP=[59,153] 

1369-2513 

DT = constant, BT = [1, 10], BS = constant, WOB = [0.01, 

19.17], RPM = [90, 186], TQ= [7.58, 27.03]. MW=[1.16,1.4], 

IN=constant, AZ=constant, SPP=[140,252] 

2513-2573 

DT = constant, BS = constant, BT = [1, 10], WOB = [11.78, 

19.07], RPM = [150, 180], TQ = [11.35, 19.07]. 

MW=[1.39,1.4], IN=constant, AZ=constant, SPP=[226,282.4] 

2573-3114 

DT = constant, BT = [1, 10], BS = constant, WOB = [1.35, 

10.96], RPM = [137, 180], TQ = [1.07, 9.84]. MW=[1.39,1.42], 

IN=constant, AZ=constant, SPP=[220,290] 

3114-3520 

DT = constant, BS = constant, BT = [1, 10], WOB = [2.04, 

6.87], RPM = [60, 140], TQ = [2.11, 6.15]. MW=[1.39, 1.44], 

IN=constant, AZ=constant, SPP=[174.6, 233.9] 

 

4.3.2 Development of the ROP function using RSM 

The CCD design was utilized for the generation of fitting equation (4.17) with a face-

centered configuration where alpha was one. The ten input variables were considered as 

factors that were coded in two levels [1,-1]. There were 128 cube points, 10 center 

points, and 20 axial points present in the developed CCD design with a total of 158 base 

runs. The quadratic equation of RSM contains controllable input factors and 

uncontrollable factors. These uncontrollable or predefined factors such as DT, AZ, etc. 

were held as constant as they cannot be altered. The objective function of ROP 

developed using RSM is given below. 
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2
2 4 5 9 10 1

2 2 2 2 2
2 3 4 5 9 1 2

1 2 1 3 1 9 2 7 2 9 4 6

4 8

( ) 21.61 12.337 15.34 37.57 0.1554 17.67

2.55 0.1699 2.325 3.35 2.6398 11.72

7.04 7.04 12.437 16.11 1.84 8.67

3.767 0.

f x x x x x x x

x x x x x x x

x x x x x x x x x x x x

x x

            

           

          

   4 10 5 9 5 8 5 100564 7.391 9.156 0.0723 59.62x x x x x x x x       
                   (4.17) 

This ROP equation (4.17) shows predictor variables in the quadratic fitting 

equation. The R2, adjusted R2, and predicted R2 for the above-mentioned objective 

function are 84.41%, 82.68%, and 81.23% respectively as given in Table 4.6. Adjusted 

R2 shows the goodness of fit for the developed regression model. Less difference 

between R2 and adjusted R2 shows that important predictors were selected for fitting a 

quadratic polynomial of RSM. Contours and 3D Surface plots were also generated to 

have a better visualization of the effects of various predictor variables with ROP as 

shown in Figures 4.7 and 4.8. These plots were helpful for the manual search of optimal 

points in the case of a lower number of input variables. However, the manual search 

technique is not recommended in our case due to the complexity of the developed ROP 

objective function. The significance level of 5% was used while developing an objective 

function for ROP (equation 4.17). It has been reported the 5 % significance level 

balances Type 1 and Type 2 error during hypothesis testing of any regression 

coefficients [114,115]. The correctness of the developed ROP objective function was 

validated by analysis of variance (ANOVA) test as shown in Table 4.11. This test 

demonstrates that coefficients satisfy 5% significance level criteria. All the terms having 

P values higher than the significance level were eligible for the null hypothesis which 

resulted in zero value of coefficient terms and was eliminated from the ROP regression 

equation. Table 4.11 shows all the coefficients having lower P values. A T-test was also 

performed to validate the significance of the regression coefficient of the ROP function. 

There are several missing interaction terms in the ROP objective function such as 

BT*BT, BT*BS, etc. due to their higher P values. The developed equation (4.17) has 
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been optimized using the ABC algorithm available in the python beecolpy 2.1 packages 

based on Karaboga and Basturk, [116]. Figure 4.9 shows Residual plots of errors 

resulted from the developed ROP objective function using RSM. 

 

Table 4.11.  Results of the ANOVA test for significant terms in ROP equation (4.17) 

utilized in this study. 

Source DF Sum of Squares Mean Square F-Value P-Value T-Value 
Model 63 10.29 0.1633 48.74 0.00 0.000 

2x   1 0.98 0.1022 30.51 0.00 5.524 

4x   1 0.013 0.013 3.94 0.047 1.986 

5x   1 0.0158 0.0157 4.71 0.030 −2.169 

9x   1 0.02 0.02 5.97 0.015 2.444 

10x   1 0.0020 0.00204 0.61 0.036 −1.779 

1 1x x   1 0.022 0.020 5.98 0.015 −2.445 

2 2x x   1 0.1132 0.1132 33.77 0.000 5.811 

3 3x x   1 0.0001 0.00005 0.02 0.897 −0.129 

4 4x x   1 0.0139 0.0139 4.15 0.042 −2.038 

5 5x x   1 0.0243 0.0243 7.24 0.007 2.691 

9 9x x   1 0.0343 0.3433 10.24 0.001 −3.200 

1 2x x   1 0.1493 0.1493 44.57 0.00 −6.676 

1 3x x   1 0.0154 0.0154 4.61 0.032 −2.146 

1 9x x   1 0.0027 0.00271 8.09 0.005 −2.844 

2 7x x   1 0.1153 0.1153 34.4 0.000 −5.865 

2 9x x   1 0.0206 0.0206 6.15 0.013 2.480 

4 6x x   1 0.0157 0.01565 4.67 0.031 −2.161 

4 8x x   1 0.0134 0.0133 4.01 0.046 −2.002 

4 10x x   1 0.0206 0.0206 6.15 0.013 2.480 

5 9x x   1 0.1299 0.1298 38.75 0.000 −6.225 

5 9x x   1 0.0534 0.05303 15.82 0.000 3.978 

5 10x x   1 0.0137 0.01366 4.08 0.044 2.019 

 

*Table 4.11 contains the ANOVA analysis of significant terms only while insignificant 

terms that fail in the significance test of 5% are eliminated to reduce the redundancy in 

equation (4.17).  
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Figure 4.7  Contour plots show interactions of different input variables visualized in 2 

D plane for equation (4.17). (Example: In WOB*DT subplot, WOB is on the y-axis 

whereas DT on the x-axis.).  
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Figure 4.8 Surface plots for ROP objective function generated using the RSM 

technique. These plots help to visualize the interactions between various input variables. 

These are graphical visualization of the fitted ROP equation (4.17). 

 

The developed equation (4.17) has been considered as an ROP objective function. 

During the optimization process, equation (4.17) was maximized using ABC with upper 

and lower bounds as shown in Table 4.10 according to the following steps. (a) Initialize 

the search boundaries using the range of parameters provided in Table 4.10 and code the 

equation (4.17) as an objective function (b) Adjust the other parameters of ABC. 

(colony size=50, scouts=0.5, iterations=100, min_max=’max’, nan_protection=True). 

Here the size of the colony determines bees in the algorithm. Half of its values represent 

food sources, employed bees, and onlooker bees. (c) The algorithm returns a global 

optimal solution for the ROP objective function along with the locations of food sources 

or possible solutions (local maxima). (d) Record the values of ROP and other variables 

including BT. Table 4.12 and 4.14 contain the optimum values of drilling variables and 

BT for target formations.  
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Figure 4.9 Residual plots of errors from developed ROP objective function using 

RSM.(a) Normal probability plot is used to verify normal distribution of residual data 

(b) Histogram of residuals provide details about data skewness or outliers presence. (c) 

Residual vs fits confirm the constant variance of residual. (d) Residual vs order plot 

check whether residual are uncorrelated or not. These graphs are generated to inspect 

the goodness of fit of fitting equation (4.17) and ANOVA test.  

 

4.4 Discussion 

The selection of suitable drill bits is essential for a successful drilling operation to 

minimize the overall wellbore cost and increase the efficiency of the drilling operations. 

In this study, an alternative approach has been investigated for drill bit selection using 

RSM and ABC combination. RSM has been utilized to develop an objective function 

for ROP and to determine optimum values of drilling control variables using ABC. Ten 

drilling variables were considered as input variables for the development of the ROP 

objective function namely, DT, BT, BS, WOB, RPM, TQ, MW, IN, AZ, and SPP. 

Three nearby Norwegian wells’ data have been considered for testing the proposed 
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approach of drill bit selection. The five geological zones of well C were utilized for the 

testing of data-driven drill bit selection techniques as shown in Tables 4.12 and 4.13. 

Figure 4.4 shows the generalized schema of the proposed approach for drill bit 

selection. The developed objective equations (4.16 and 4.17) for ROP were optimized 

with the upper and lower bounds provided in Table 4.10 to obtain the optimum value of 

BT and ROP. Table 4.12 contains the bit types selected based on optimum ROP values 

using different data-driven approaches. ANN has wrongly predicted the drill bit types 

for zones 1, 3, and 4, however, when combined with GA its drill bit selection error 

reduces to zones 1 only.  

ANN has been reported to have a tendency for stuck up in local minima which is 

why it failed to predict the correct bit type for certain target formations [86, 87]. 

However, when combined with GA, the optimization task is handled by GA which is a 

strong optimizer and converses to the correct BT except in zone 1 as compared to actual 

BT. Equations (4.16) and (4.17) are multimodal equations, developed through high-

dimensional data, comprise of large local optimal points. Therefore, detecting a globally 

optimum solution in search space is a difficult task. In the case of GA, sometimes 

premature convergence may happen due to strong selection pressure imposed by the 

selection operator and crossover operator if the initial population lacks desirable 

diversity. However, ABC utilizes a stochastic search technique which is good at 

maintaining diversity and escaping local optimal stagnation. Table 4.12 shows that the 

proposed RSM and ABC combination has precisely estimated the bit-types for five 

target geological zones. Here, information about actual drill bits used in the real field for 

drilling the wells has been taken as a standard reference for comparison in Table 4.12. 

Table 4.14 contains the optimum values of drilling variables acquired through RSM and 

ABC combination at certain given depths. However, the performance of drill bits 
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selection techniques must be compared based on the drilling cost involved in the drilling 

operations. It might be possible that the GA suggested BT for zone 1 is more suited to 

an applied bit. Therefore, the cost-per-foot analysis should be done for each drill bit to 

check the economic feasibility of suggested drill bit types. 

The drilling cost has a direct relationship with ROP and the running life of the drill 

bit that is needed to be minimized. Polycrystalline diamond compact (PDC) drill bits 

were primarily utilized for drilling the Norwegian wells, hence, are considered in this 

study. Nearly, 10-40 % of dryhole well cost is found dependent on PDC drill bit [16]. 

PDC bit life fluctuates with its design parameters such as cutter distribution, type of 

gauge protection material, etc. whereas, design parameters such as nozzle placement, 

cutter shape, PDC type, etc. directly vary the bottom hole ROP drastically [16]. 

Therefore, the selection of suitable BT is essential for the minimization of associated 

drilling costs. The selection performance of different data-driven approaches has also 

been compared based on cost-per-foot analysis. The prices of drill bits were identified 

from the manufactures catalogs. The totality of trip time and connection time was 

expected to be 6 hours per 1000 ft. Equation (1.1) has been utilized to perform the cost-

per-foot analysis of the predicted drill bit. Table 4.13 shows the computed cost per foot 

results for five target zones of well C based on drill bits selected through different data-

driven approaches. Figure 4.10 shows that the selection of the bit for five target drilling 

zones by ANN and GA combination and proposed approach has given nearly similar 

types of drill bits and cost per foot except for zone 1. The proposed approach has given 

a lesser cost per foot value for zone 1 as compared to ANN and GA combination as 

shown in Table 4.13. Table 4.14 shows the optimum value of input drilling variables for 

certain depths of target zones using the RSM and ABC combination. Therefore, the 

proposed RSM and ABC combination is found more reliable than ANN-based drill bit 
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selection models and can also be utilized for drill bit selection purposes. Moreover, 

these models are case-specific, as well as data-dependent in nature, and require 

calibration for other fields.  

 

Table 4.12 Comparative analysis of drill bit selection results for the test geological 

zones. 

Bit Selection Models Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

Hou, Chien, & 

Yuan, (2014) ANNs 3 5 4 3 8 

Edalatkhah, 

Rasoul, & 

Hashemi, (2010)/  

Abbas et al. 

(2019) ANNs and GA 3 5 6 7 8 

Proposed 
approach 

 
RSM and ABC 1 5 6 7 8 

Actual BT Data  1 5 6 7 8 

 

Mostly, PDC drill bits have been utilized along with roller cone bits for the drilling 

of the Norwegian wells considered in this study. These bits are widely applied in 

offshore conditions due to various benefits such as reducing tripping time, drilling in 

non-hydrating formations, achieving high RPM and ROP in directional drilling, etc. 

However, PDC bits are sensitive to fragile and soft formations as in the case of Volve 

wells considered in this study. These wells comprise softer rock formations that contain 

fine to medium sandstone, some interbedded claystone, siltstone, and limestone 

stringers, marl, argillaceous laminations, etc. as shown in Table 4.1. Soft, fragile, and 

fractured rock formations affect the stability of PDC bits with a large reduction of the 

bit life. Recently, hybrid drill bits (e.g. Kymera) have been developed that combined the 

properties of conventional PDC bit and roller cone bit types [117]. These hybrid bits 
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seem to be a good solution for drilling problematic wellbore sections while maintaining 

the stability of drilling operations. It may be possible that the drilling cost per foot has 

been reduced more if hybrid drill bits are employed for drilling the Norwegian wells 

considered in this study. 

 

Table 4.13 Comparison of drill bit selection results based on cost per foot calculation 

for different approaches. 

Target 

Zones 

ANNs 

predicted 

Cumulative 

CCF  $/ft 

ANNs 

and GA 

Cumulative 

CCF $/ft 

Proposed 

Approach 

Cumulative 

CCF $/ft 

Zone 1 3 50 3 50 1 24  

Zone 2 5 25 5 25 5 25 

Zone 3 4 456 6 396 6 396 

Zone 4 3 50 7 50 7 50 

Zone 5 8 64 8 64 8 64 

 

 

Figure 4.10 The comparison of cost per foot calculated for five target geological zones. 

ANN and GA combination has given similar cost per foot as compared to the proposed 

RSM and ABC approach except in zone 1. In zone 1, RSM and ABC have given lower 

cost per foot results than ANN and GA combination. 
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Table 4.14 The optimum value of input drilling variables for certain depths of target 

zones using RSM and ABC combination. 

DT WOB TQ RPM SPP MW BT ROP 

Zone 1 3.72 0.01 90 62.6 1.03 1 47.4 

Zone 2 3.64 16.67 176 247.3 1.39 5 40.35 

Zone 3 16.01 21.8 178 279.3 1.22 6 10.56 

Zone 4 6.94 31.25 139 193.8 1.41 7 11.61 

Zone 5 6.87 22.28 140 205.9 1.4 8 27.54 

 

4.5 Summary 

A comprehensive study has been done to develop a new alternative approach for the 

selection of drill bit types. RSM and ABC combination has been proposed to select drill 

bit types based on the optimum values of ROP. The optimum values of operational 

variables are also determined in this research work for drilling the target formations. 

The proposed drill bit selection approach is found more accurate than ANN-based 

prediction of drill bit types. This study provides an alternate intelligent approach for bit 

selection based on optimum values of ROP. The combination of RSM and ABC 

provides a more reliable bit selection modeling approach as compared to ANN-based on 

cost per foot comparison. The prediction correlation coefficient of the RSM objective 

function is found to be 81.23% while 85.5 % has been found for ANN during the 

estimation of ROP. The ROP objective function developed through RSM is less 

complex than the ANN-based objective function due to the absence of an exponential 

function. ANN requires more computational cost for the development of the ROP 

function for its optimization. These models are case-specific data-dependent models and 

require calibration for other field data.  
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Chapter 5  

A Novel Application of Ensemble Methods with Data 
Resampling Techniques for Drill Bit Selection 

 

5.1 Introduction 

The cost of drilling operation for a hydrocarbon well is mainly dependent on various 

factors namely, the operating cost of the drill rig, the time required for drilling target 

formations, the number of tripping operations, the life of the drill bit, and drill bit cost 

[83-85]. Nevertheless, drilling costs can be significantly minimized through the 

selection of appropriate drill bit designs, which in turn reduces the operating time of the 

rig with fewer tripping events and more life expectancy of the drill bit. However, the 

selection of suitable drill bit types for drilling geological formations is a problematic 

task due to complex interactions between reservoir properties, drill string hardware 

design. In the previous chapter, drill bits selection is proposed based on optimum values 

of rate of penetration (ROP) which is one of the most important parameters of the 

drilling operation. In this chapter, a second approach, based on the prediction capability 

of classifiers, is proposed for drill bits selection. Recently, data-driven intelligent 

models have been utilized to find suitable types of drill bits. These models are reported 

to be more accurate as they learn from previous well data, defying traditional methods 

for selecting the appropriate drill bit [24]. Bilgesu et al. [25] used Artificial neural 

networks (ANN) for the prediction of drill bit types for drilling target geological 

formations. Yilmaz et al. [26] trained the ANN model using previously drilled wells 

offset data and predicted the drill bits types for the development wells required to be 

drilled internally and externally of the same field. They also tested the trained ANN 

model for the prediction of drill bit types for the development wells that were required 
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to be drilled in an adjoining field. Bahari et al. [15] utilized a genetic algorithm (GA) for 

the accurate computation of constants for the Bourgoyne-Young ROP model. 

Edalatkhah et al. [27] also selected the suitable drill bit types using ANN and GA for 

South Pars field wells. Momeni et al. [28] applied ANN for the estimation of drilling 

ROP and bit types [14]. Momeni et al. [29] combined ANN and GA for drill bit 

selection based on optimal ROP. They selected the drill bit types based on the optimum 

values of ROP and drilling variables. Abbas et al. [18] also supported the notion of drill 

bit selection depending upon optimum values of ROP using ANN and GA. Here ANN 

was primarily utilized for the development of the objective function and GA for 

optimization of ROP objective function for the drill bit selection.  

     Several researchers have suggested the utilization of supervised classifiers as an 

alternative approach for the automatic selection of drill bit types based on previously 

drilled offset wells data. [24-29].  The historical drilling data of previously drilled wells 

have been provided for the training of Artificial neural networks (ANN) for screening 

the drill bit which is the first supervised classifier utilized for the selection of drill bits. 

Several works have supported the utilization of ANN classifier for the drill bit in place 

of conventional human experience-based drill bit selection. The reported applications 

never took consideration of various practical and computational aspects of bit selection 

that will hamper the performance of any supervised classifier in real field conditions 

such as imbalanced data condition generation, the impact of unstable formations, 

behavior of supervised classifiers with imbalanced data, etc.   

     Most of the reported research works are trained on balanced datasets with the fewer 

drill bit types. The successful applications of ANNs have shown that data-driven models 

have the potential for the automation of the bit selection process. However, none of 

them have considered the problem of imbalanced data that will naturally occur due to 
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the varying thickness of subsurface lithofacies. The actual field data contain the uneven 

distribution of data samples that result in a complex imbalanced multiclass classification 

problem during drill bit selection. This uneven distribution of training data samples 

affects the generalization capability of supervised machine models for unseen data and 

also makes them unreliable. Therefore, proper investigation of machine learning models 

is required to evaluate their effectiveness for the screening of drill bit types with 

complex offset wells data to provide more pragmatic solutions.        

     Here, the drill bit selection process has been formulated as a multiclass classification 

problem where diverse drill bit types have acted as class labels. In this work, two 

ensemble methods namely, AdaBoost and Random forest (RF) have been investigated 

for handling the complex multiclass imbalanced data problem associated with intelligent 

drill bit selection. These ensemble paradigms contain boosting techniques in their 

internal architecture which has been reported useful for solving the imbalanced data 

issues. They also reduce the bias and variance error associated with training data that 

provide a better generalization to the prediction results. These ensemble methods are 

combined with data resampling techniques to enhance their capability of dealing with 

imbalanced data. Additionally, the behaviour of four popular classifiers namely, K-

Nearest neighbors classifier (KNC), Navies Bayes classifier (NBC), Multilayer 

perceptron (ANN), and Support vector classifier (SVC), have also been studied to select 

diverse bit types for drilling critically unstable geological formations. The primary 

motivation of this research work is to explore popular machine learning algorithms in 

the quest for higher drill bit selection accuracy and better generalization.  

     Further, it compares the performance of popular machine learning models for drill bit 

selection; and addresses the problem of imbalanced data which adversely affects the 

performance of machine learning models for the selection of drill bit. Moreover, the 
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impact of softer and unstable geological formations that produce critical training data 

for machine learning models has also been studied to select diverse drill bit types. The 

behavior of supervised classifiers has been considered for drill bit selection in critical 

formations. The future implications of automatic drill bit selection are also discussed in 

this chapter. The comparison of results has been performed to identify the best 

performing classifier among all the above-mentioned models. All the applied machine 

learning models have been trained and tested using Norwegian oil and gas field data. 

The data-related challenges associated with the drill bit selection process have also been 

discussed. This chapter also discusses issues related to intelligent classifiers and 

imbalanced petroleum data such as applicability issues, performance difficulties, 

performance evaluation parameters, and possible data-driven solutions. Overall, a 

comprehensive study of machine learning models has been performed to assess the 

challenges associated with the automatic drill bit selection process with practical field 

datasets. 

5.2 Adaptation in ensemble methods for handling imbalanced petroleum data 

In this study, oversampling and undersampling approaches have been utilized to 

generate balanced datasets for the training and testing of ensemble methods. All the 

data-related techniques used in this research work are briefly explained below. 

5.2.1. Data Resampling Techniques 

Several real-world problems involve imbalanced data issues where the distribution of 

samples varies from class to class. It is reported that the majority classes naturally 

dominate the minority classes during the training of supervised classifiers, which makes 

them biased and unreliable. However, machine learning models require balanced 

datasets for their best possible performance [118]. To overcome this imbalanced data 
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problem, two data sampling techniques were applied for generating balanced datasets 

for the classifiers to compensate for the ill effects of imbalanced data. 

5.2.2. Oversampling 

Oversampling technique increases the data samples in the minority class by duplicating 

the prevailing samples or producing synthetics ones [119]. This approach is widely 

applied for the generation of the balanced dataset for the training of supervised classifiers. 

Various oversampling techniques are available in the literature such as random over 

sampler, focus over sampler, synthetic minority over-sampling technique (SMOTE), etc. 

SMOTE is a widely applied technique for oversampling. Therefore, in this paper, the 

SMOTE technique has been applied for balancing the number of data samples for each 

class. This approach does not produce duplicate copies of existing data samples but 

synthesizes new ones. It takes the feature space samples for each class and combines them 

with the features of nearest neighbors [119,120]. 

5.2.3 Undersampling:  

In the undersampling technique, the samples from the majority class are removed to 

decrease their data samples up to the number of minority class’s data samples. This seems 

to be a straightforward approach for data sampling but is found suitable when the 

minority class has a sufficient amount of data samples [121]. There are various techniques 

applied for undersampling of the data samples such as Tomek links, edited nearest 

neighbors, random under sampler, etc. [120,121]. The random under-sampler technique 

has been used for the generation of a balanced dataset used in this study. It’s a simple and 

fast method for the generation of a balanced dataset through random sampling from 

original data. Here, the number of samples in each class of the balanced dataset is 

predefined by the user. This technique selects bootstrap subsets from the original data for 

each class based on the user-defined value of samples [120]. It considers each class 
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independently in case of multiclass imbalance problems which is useful for sampling 

heterogeneous data having string values in samples [120,121]. Undersampling approach 

has been recommended only in big data conditions and may result in loss of important 

information during the removal of data samples from the majority class [120,121]. Both 

over and under-sampling approaches have limited benefits for handling imbalanced data 

at the data level, therefore, ensemble methods, having boosting techniques in their internal 

architecture, are also investigated at the algorithm level to compensate for the effects of 

imbalance. 

5.2.4 Ensemble methods 

Ensemble methods are multiple-learner systems that train and combine the outcomes 

of several supervised learners to produce the final outcomes for pattern recognition tasks 

[67]. The motivation for the integration of supervised machine learning models is to 

achieve higher prediction accuracy and improve the generalization ability of ensemble 

models. The ensemble approach has been reported to be efficient for reducing errors 

associated with the bias and variance of training data [122]. These methods are also found 

suitable for handling imbalanced data problems because they integrate boosting 

techniques within their internal architectures [122]. In this study, two ensemble methods 

namely, AdaBoost and Random forest are mainly studied for handling complex 

imbalanced data for the drill bit selection process and are briefly explained below. 

5.1.2 AdaBoost  

Freund and Schapire (1996) proposed AdaBoost ensemble technique based on the 

boosting paradigm [71]. It trains the base classifiers using random bootstraps data samples 

generated from original data and combines their decisions through a weighted majority 

vote. Initially, it assigns equal weights to all the training data samples. Further, weight 

adjustments are performed based on the misclassifications made by the initial base 
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classifier. Weights of misclassified data samples are increased in the next modified 

training dataset so that the chances of occurrence of misclassified samples will be 

increased in the next training dataset [71]. AdaBoost is particularly found supportive in 

handling imbalanced data problems [123]. The assignment of weights to bootstrap subsets 

is equivalents to resampling data space while combining upper and down sampling [123]. 

It has accuracy-oriented approach and focuses on the wrongly classified samples while 

increases the weight until it gets correctly classified. It provides a solution for imbalanced 

data problem at the data level equivalent to the resampling technique utilized for 

imbalance reduction. In this, under-sampling of majority classes is performed to produce 

the balanced dataset and is termed as under-sampled AdaBoost (USA). Figure 5.1. A 

shows a generalized workflow of the AdaBoost algorithm. The standard AdaBoost 

ensemble can be applied as given below. 

Algorithm 

 Produces bootstrap training subsets 1 2( , .... )n NX X X X from original training 

data X and is associated with initial equal weights 1 2( , .... )n NW W W W
.(n=1,2,3,4…N) 

 Base classifiers ( )nC x are trained using weighted training subsets.  

 1 1 2 2( , .... )n n N NW X W X W X W X and determine error probability as 

1

1 N

n i i
i

Error W
N




   

 Where 1
0{ otherwise

i if sample correctly classified  and change in weights is given as 
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2
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n
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 Update weights as 1 exp( )n n n
i i n iw w C   if the calculated error is between 0 to 0.5 

(i=1,2,3…N) and renormalizes samples weights so that 1

1

N
n

i
i

W N



 otherwise 

initialize all the subsets’ weights as 1 and repeat the above-given steps.  
 Integrate the decisions of all the classifiers ( )nC x  by weighted majority voting 

rule as specified below. 

1
sgn , 0( ) arg max ( ( )), , { i j

n n i j i j
n

x C C x Y where   
  is known as the Kronecker 

symbol and Y is the class label.  
 



112 
 

 

 

Figure 5.1. A generalized workflow of the AdaBoost algorithm. 

 

5.2.2 Random forest (RF) 

Breiman (2001) developed an RF algorithm by modifying the Bagging ensemble 

[124]. RF can be employed for resolving estimation, detection, and recognition-related 

problems. RF has certain peculiar merits over other classifiers such as computationally 

fast, few numbers of model parameters for tuning, easier evaluation of generalization 

error, the capability of handling high dimensionality, can be utilized for attribute 

selection, etc. [125]. RF is the assembly of decision trees in single ensemble architecture 

where each decision tree is generated from random training variables [126]. For the 

training of its decision trees, RF generates random bootstrap data subsets from training 

data with the replacement of data samples. The final estimation function is in the form of 
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a loss function that is required to be minimized [126]. All the feature space is available to 

the root node of the decision tree. Non-splitting nodes in the decision tree are called 

terminal nodes. The standard RF algorithm can be utilized for imbalanced data 

classification by adjusting the weight of each class while computing the impurity score for 

a selected split point [127]. The weights will be adjusted according to the inverse 

relationship with class frequencies in the training data [127]. This will shift the focus of 

RF on the minority class samples. This will result in the formation of a weighted class RF 

technique (WCRF) for the classification of imbalanced data [127].  

 

Figure 5.2 A generalized workflow of the drill bit selection process based on the 

Random forest algorithm. 

 

The second approach that can be applied with RF is the bootstrap weighting 

approach. Here, the weight adjustment of a class is performed based on its distribution in 

every bootstrap sample in place of the whole training dataset [127]. Such a configuration 

of RF is known as RF with bootstrap class weighting (WBCRF). In the third approach, 

the majority of classes are randomly under-sampled in bootstrap samples to produce 
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balance datasets (USCRF). This adjustment will explicitly vary the class distribution 

inside the random bootstrap samples.  Figure 5.2 shows a generalized workflow of the 

drill bit selection process based on the Random forest algorithm. 

5.3 Methodology 

In this study, drill bit selection has been formulated as a classification problem where 

diverse bit types have acted as class labels. The performance of four popular classifiers 

namely, KNC [128], NBC [129-130], MLP [131], and SVC [132,133], have been tested 

to select drill bits for the given values of operational field variables. AdaBoost and RF are 

also applied with the resampling technique for screening of drill bit. All the machine 

learning paradigms have been implemented through the open-source Scikit-Learn python 

package on the Anaconda platform. Python libraries have several merits over other 

prevailing platforms such as the capability of handling real-field input wells data, 

implementation of statistical tests to intelligent paradigms, visualization of results, self-

explanatory user guides, community, and forums, etc. 

 

Figure 5.3 Geological location of Volve oil and gas field (Courtesy: Equinor website) 

[134]. 
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5.3.1 A brief description of Volve field 

This field is situated in the central part of the North Sea near the Norwegian 

Continental Shelf. It was discovered in 1993 and its production shut down in 2016 by its 

investors' companies. The ocean depth near the Volve field is in a range of 85 to 95 

meters. This field contains Jurassic sandstone related to the Hugin formation reservoir. 

Figure 5.1 shows the location of Volve oil and gas field in the North Sea. The 

depositional environment of this reservoir is analyzed as tidal to the shallow estuary 

[134]. The sandstones of the Hugin reservoir contain high contents of quartz and a 

medium to low range of mica and clay minerals. Various faults can also be found in 

Hugin formation due to salt and Jurassic extensional tectonics [134]. Draupne formation 

acts as a worthy spring for oil production due to its organic-rich claystone layer. Smectite 

contents and argillaceous clay are found in large quantities in Hordaland shales which 

may be the cause for the higher formation pore pressure and its instability. This formation 

is not recommended for drilling high angle wellbore due to its easy collapse chances 

[134]. Balder formation comprises crumbly tuff content which has been reported as the 

primary reason for mud losses and washouts. The presence of crumbly tuff in Blader 

formation also decreases its fracture gradient that leads to the instability of formation. 

Drilling operations in the Sola formation have also suffered from several issues such as a 

tight hole, collapses, etc. The average properties expected from this Hugin reservoir are as 

follows: porosity (0.2), permeability (910), water saturation (0.23), and shale volume 

(0.17) [130]. Geosteering was particularly utilized to increase the extent of the reservoir 

linking to various fault blocks. Table 5.1 contains the geological prognosis of Well 15/9-

F-12 considered under this study. 
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5.3.2 Data description 

The dataset utilized for training and testing of machine learning models belonged to 

Norwegian Volve oil and gas fields. These data are available online and can be 

downloaded from the website of the Equinor oil and gas company. The field data of the 

fourteen Volve oil and gas wells were made public for academic and research purposes in 

2018 [134]. Eight wells data were downloaded from the Equinor company website for the 

testing of machine learning models considered in the study for drill bit selection namely, 

15/9-F-4, 15/9-F-5, 15/9-F-7, 15/9-F-9, 15/9-F-10, 15/9-F-11, 15/9-F-14, and 15/9-F-15 

[30]. These wells were planned to maximize the production of hydrocarbon from the 

Hugin formation. Generally, the production wells in the Volve field were multilateral in 

nature, however, observation and injection wells were in J-shape trajectory [134]. The 

total number of data points extracted from the final drilling reports of eight wells is shown 

in Table 5.2. Table 5.3 contains the statistical description of various variables utilized for 

drill bit selection. 

Table 5.1 Geological prognosis of Well 15/9-F-12 under study [134]. 

Group Formation Depth (m) Description 

Nordland Utsira Top 892 Grey claystone, a stringer of sand, and 

siltstone. 

 Utsira Base 1084 Well sorted sandstone, minor silt, and 

limestone stringers. 

Hordaland Skade Top 1259 Claystone, minor limestone/dolomite stringers.  

 Skade Base 1347 Medium-grained sorted sandstone. 

 Grid Top 2179 Fine-grained sandstone. 

 Grid Base 2245 Fine-grained sandstone. 

Rogaland Balder Top 2317 Colored claystone, partly tuffaceous, and 

limestone stringers. 

 Sele Top 2374 Claystone and limestone stringer. 

 Lista Top 2445 Non-calcareous claystone and minor limestone 
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stringers. 

 Ty Top 2531 Fine to medium sandstone some interbedded 

claystone, siltstone, and limestone stringers. 

Shetland Ekofisk Top 2698 Limestone with traces of claystone and 

sandstone. 

 Tor Top 2715 White limestone with traces of claystone. 

 Hod Top 2839 Limestone along with gluconate. 

 Blodoeks 

Top 

2944 Marl, argillaceous laminations, and gluconates 

in parts. 

 Hidra Top 2972 Off-white firm limestone. 

Cromer 

Knoll 

Roedby Top 2981 Marl along with argillaceous laminations 

 Aasgard Top 3001 Interbedded limestone and marl with minor 

claystone and siltstone. 

Viking Draupne Top 3036 Organic-rich claystone, micaceous, 

carbonaceous with traces of pyrite. 

 Heather Top 3086 Claystone with limestone stringers. 

Vestland Hugin Top 3094 Sandstone and rare claystone stringers. 

 Sleipner Top 3266 Sandstone, grey claystone, and layers of coal. 

 

Table 5.2 Details of data samples extracted from the Final drilling reports of Norwegian 

wells.  

S. No. Well No Data samples Acquired Classification 

1. F-4 548 Injector well 

2. F-5 721 Injection Well 

3. F-7 187 Production well 

4. F-9 180 Production well 

5 F-10 718 Observation/Production well 

6. F-12 631 Production well 

7. F-14 711 Production well 

8. F-15 616 Observation well 

 Total 4312  
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The input data extracted from the final drilling reports of eight wells contained a 

variety of sensor-measured variables. The downloaded data are available in pdf format 

that has been later converted to excel file format for ease of handling. This type of data 

normally contains issues such as noise, redundant attributes, missing or garbage values, 

etc. that are required to be cleaned before uploading into machine learning models, 

otherwise, it will affect models’ performance. These input variables will act as predictor 

variables and unique IADC codes of drill bits will act as class labels.  However, IADC bit 

numbers cannot be directly utilized for class labels instead coded to newer class labels as 

shown in Table A-1. Loken et al. [135] calculated additional parameters that are based on 

the natural interactions of conventional drilling variables such as mechanical specific 

energy (MSE), depth of cut (DC), drill Bit aggressiveness (DBA), and D-exponent (D-

EXP) [135]. These interaction drilling variables have been extensively stated in several 

research works [135-138]. The additional interaction drilling parameters have been 

calculated as given below. 

                      120* * *

*bit bit

WOB RPM TQ
MSE

Area Area ROP


                                                     (5.3) 

                                     
5*

ROP
DC

RPM
                                                                    (5.4) 

                                  
36*

*

TQ
DBA

WOB BD
                                                             (5.5) 

where WOB is the weight on the bit in tons, RPM is round per minutes in rpm, TQ is 

torque in kN/m, ROP is the penetration rate of a drill bit in m/hr, Areabit is the area of a 

drill bit in inch square, and BD is drill bit diameter in inch. 
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Table 5.3 Statistical details of collected drilling data of eight wells used in this study. 

S. No. Input Variables Range Units 

1.  Measured Depth (DT) 45-3785 m 

2.  True Vertical Depth (TVD) 150-3244.36 m 

3.  Rate of Penetration (ROP) 1.62-205.01 m/hr 

4.  Weight on bit (WOB) -7.27-51.57 tons 

5.  Rounds per minutes (RPM) 6-311 rpm 

6.  Torque (TQ) -28.53-96.14 kNm 

7.  Standpipe pressure (SPP) 3-389.2 bar 

8.  Mud weight (MW) 0.99-1.47 s.g. 

9.  Flow Rate in (FR) 432-5345 l/min 

10.  Total Gas (TG) 0-10.6 % 

11.  Bit type (BT) 1-19 -- 

12.  Bit Size (BS) 8.5-26 inch 

13.  D-exponent (DEXP) 0.26-1.55 -- 

14.  Total flow Area (TFA) 0.663-1.51 inch2 

15.  Mechanical Specific Energy (MSE) 2213.0-85127.7 psi 

16.  Depth of Cut (DC) 2.5-5.06 m/rev 

17.  Drill bit Aggressiveness (DBA) 2.07-6.13 -- 

 

5.3.3 Imbalanced data problem 

The diverse input variables utilized for the training of machine learning models 

were obtained from drilling the subsurface lithofacies. These lithofacies have naturally 

existing subsurface rock layers that occur in a random pattern along with the depth of 

the geological formations. The thickness of subsurface layers also unevenly varied at 

different depths of geological reservoir. Different subsurface rock requires diverse drill 

bits for efficient drilling operations. The thick rock layers generate a large amount of 

drilling data samples that can be used for classifying associated bit types. However, 

drilling of thin layer intervals produces a lesser amount of drilling data samples that are 

available for the training of machine learning models. This results in uneven distribution 



120 
 

of drilling data samples which affects the performance of each supervised classifier. 

Figure 5.3 shows the number of data samples associated with each bit type available in 

input drilling data. Imbalanced data samples are difficult to classify and adversely 

affects the performance of the supervised classifiers algorithm [139]. It can be seen in 

Figure 5.2 that BT 6 (34), BT 7 (13), BT 11(26), BT 12 (52), and BT 16 (13) contain an 

extremely lesser number of data samples as compared to other classes. This results in 

imbalanced data conditions that will automatically jeopardize the whole data-driven bit 

selection process. A single supervised classifier generally fails to perform adequately 

with imbalanced data conditions. Popular supervised paradigms such as KNC, ANNs, 

SVM, etc. become biased for majority classes while ignoring the smaller classes. 

However, overall classification accuracy will be reported high in case of imbalanced 

data conditions. To tackle imbalanced data conditions, certain modifications have been 

suggested by the researcher that is rarely applied in the petroleum domain. This problem 

can be handled at two levels namely, the data level, algorithm levels. Four major 

solutions can be applied for handling imbalanced data conditions namely, (a) 

resampling (b) boosting (c) adaptive algorithm (d) cost-sensitive learning [119]. In this 

study, boosting, and resampling have been selected for handling the imbalanced data 

condition occurring during the drill bit selection process. Drill bit selection is a complex 

multiclass classification problem that requires strong classifier paradigms for its 

classification. AdaBoost and RF, are the two strong ensemble classifiers that 

incorporate boosting technique within their internal architectures, can be combined with 

resampling to handle imbalanced data efficiently.  
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Figure 5.4 Number of data samples available in real field drilling data for each bit type. 

 

5.3.4 Data Preprocessing  

Several petroleum researchers have supported the idea of preprocessing real-field 

wells data before uploading it to machine learning models [140]. Preprocessing of input 

data helps to enhance the prediction accuracy of machine learning models and reduces 

the chances of errors. Primarily, data resampling was executed to remove the data 

samples having null and garbage numeric values. Further, the normalization of input 

data was performed to diminish the impact of larger values on the smaller ones. 

Mustaffa and Yusof (2010) compared the normalization techniques and reported that 

Min-max normalization is particularly suitable for those paradigms which have distance 

measurement or optimization in their internal design such as K-NN, NBC SVC, etc. 

[141]. Min-max normalization is also recommended for those input data which don’t 

follow Gaussian distribution which applies to operational field data acquired in this 

study.  The data can be normalized as given below. 
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                                                         (5.6) 

where XMax and XMin are maximum and minimum values of operational variables. This 

technique also ensures that each input variable is uniformly scaled down on the same 

level.   

5.3.5 Noise reduction 

The problem of noise in the sensor recorded data has been reported in several 

research works that affect the performance of machine learning models. Conventional 

noise filtering techniques such as Fourier transform, moving average, SG filters, etc. are 

found to be less effective for the removal of noise contents from drilling data [142]. In 

this study, wavelet filters have been utilized for the denoising of drilling data which is a 

popular noise filtering technique [143]. In wavelet transform, spare representation of 

drilling data has been generated to concentrate whole data features into large magnitude 

wavelet coefficients. The smaller value coefficients are considered as noise components. 

Later, these smaller coefficients are eliminated during the noise filtering process. The 

wavelet transform of input data can be given as: 
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                                         (5.7) 

where k is the scaling factor, h is the factor of expansion and (t)  is the wavelet basis 

function. Further, an inverse wavelet transform can be taken to reconstruct the original 

waveform of input data. Inverse wavelet transform can be given as: 
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                             (5.8) 

where w the wavelet factor, h is is the factor of expansion, k is the scaling factor and 

(t)  is the wavelet basis function. The lower wavelet coefficients are removed in the 
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noise filtering process; however, the properties of the original data are still preserved. In 

this study, the Haar wavelet has been used for filtering noise components from drilling 

data. Several research works have also supported the utilization of the Haar wavelet for 

denoising drilling data [143]. The noise contents are found to be large in drilling data 

because surface installed sensors have high chances of exposure from surrounding 

noise. Figure 5.4 shows the denoising of the WOB variable using the 1-D Wavelet 

filtering technique. 

 

Figure 5.5 The denoising of WOB variable using the 1-D Wavelet filtering technique. 

 

5.3.6 Attribute Selection 

 Drilling data contain redundant predictor variables that will increase computational 

cost and time during the training phase of machine learning models. Various feature 

extraction and attribute selection techniques such as principal component analysis, 

Fisher discriminant analysis, univariate attribute selection, relief algorithm, correlation 

heat-map, etc. are available in the literature to eliminate the redundant variables or 

attributes from input data. The availability of only relevant features or attributes in 
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training data enhances model accuracy, reduces the influence of noise, and training time 

of machine learning models. In this work, the forest of decision trees based on feature 

importance has been calculated for the identification of important drilling variables for 

the bit selection task. It allocates ranks and weights to input drilling variables depending 

upon their contribution to the classification task. Figure 5.4 shows predictor variables 

arranged according to their ranks and weights assigned through a Forest of decision 

tree-based algorithm. Out of sixteen input (predictor) variables, BS and TFA were 

recognized as high contributing variables for bit selection whereas TG contribution was 

the lowest as shown in Figure 5.5. Finally, TG was eliminated from the training datasets 

due to its redundant nature.   

 

Figure 5.6 Importance of input drilling variables for the selection of drill bit type. 

 

5.3.7 Model training with parameter optimization  

 The processed drilling data were split into training and testing using a cross-

validation technique. Cross-validation of input data is done to avoid the problem of 

overfitting and underfitting of machine learning models. Several schemes of cross-
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validation are available in the literature for data partitions such as k-fold, stratified k-

fold, leave one out, leave P-out, hold out, etc. K fold cross-validation was primarily 

utilized for data partition because it effectively reduces variance error associated with 

input data [144]. 10-fold cross-validation (10-FCV) splits the training data into K=10 

subsets where (K-1) subsets are used for training the machine learning models and Kth 

for their validation. Iterations will continue until all the subsets have acted at least once 

as a validation set.  The final results of machine learning paradigms are calculated by 

averaging the accuracies obtained in each iteration. After 10-fold cross-validation, 

training and testing of machine learning algorithms have been done to evaluate their 

performances. Generally, machine learning models are prone to overfitting and 

underfitting conditions. Thus, additional validation curves are generated to identify 

stable regions existing in search ranges of various models’ parameters.  

    Underfitting conditions, training, and validation scores of machine models will be 

recorded at lower values.  In the case of overfitting, training scores are reported to be 

high in combination with low validation scores. To avoid overfitting and underfitting 

conditions, models’ parameters are needed to be optimized within the stable regions 

where no dramatic change of training and validation scores take place as shown in 

Figures 5.5, 5.6, 5.7, 5.8, and 5.9. The optimization of the model’s parameters has been 

performed using the grid search technique which is a popular parameter tuning 

algorithm in the petroleum domain. The search ranges and optimum values of models’ 

parameters are shown in Table 5.4. Figure 5.6 depicts the validation curves generated 

for the Smoothening parameter of NBC and the number of hidden layers of MLP. 

Figure 5.7 shows validation curves generated for the important parameters of the KNC 

classifier viz. the number of neighbors and leaf size. Figure 5.8 contains validation 

curves generated for the regularization and gamma parameters of SVC. Figure 5.9 
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illustrates validation curves for four important parameters of RF viz. number of 

estimators, maximum depth of decision tree, minimum samples needed at a leaf node, 

minimum number of samples needed for splitting the node. Figure 5.10 shows training 

error minimization versus the number of iterations for SVC classifier.     

  
                                   (a)                                                                 (b)                       

Figure 5.7 Validation curves generated for NBC and MLP (a) NBC Smoothing, 

parameter and (b) MLP number of hidden layers. 

 

 

 
                               (a)                                                                  (b)                  

Figure 5.8 Validation curves generated for the important parameters of KNC classifier 

(a) Number of neighbors. (b) Leaf size.  
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                              (a)                                                                      (b)                    

Figure 5.9 Validation curves generated for two important parameters of SVM classifier 

(a) Regularization parameter C. (b) Gamma parameter. 

 

  
                              (a)                                                                    (b)                 

  
                                  (c)                                                               (d)                  

Figure 5.10. Validation curves generated for four important parameters of RF (a) 

Number of estimators. (b) Maximum depth of decision tree. (c) Minimum samples 

needed at leaf node. (d) Minimum number of samples needed for splitting.  
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Figure 5.11. Minimization of classification error plot generated during the training 
phase of SVC using the grid search technique. 
 

 

Table 5.4 Optimum values of various models’ parameters utilized in this study. 

Paradigms Model Parameters Search Range Optimum Value 

MLP Learning rate 0.0001-0.5 0.001 

 

Maximum number of 

iterations 100-1000 500 

 

 Neurons in the hidden 

layer 0-1000 20 

 Activation function  

identity, logistic, tanh 

and relu  relu 

 Solver adam, lbfgs, and sgd adam 

KNC Number of Neighbors 1-10 5 

 Weight uniform /distance Uniform 

 Algorithm Auto, ball_tree, kd_tree,  Auto 
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brute 

 Leaf size 1-100 40 

NBC Var_smoothing 1E-9 to 1E-1 1E-8 

SVR Penalty parameter (C) 0.1-10000 100 

 Kernel type 

Linear, polynomial, 

Gaussian  Gaussian 

 Gamma parameter (y) 0.01- 10 5 

RF Number of estimators 1-1000 100 

 

Maximum number of 

iterations  10-1000 1000 

 

Minimum samples for split 

an internal node 1-20 2 

 

Maximum depth of the 

tree 1-1000 ‘None’ 

 Minimum leaf samples 0-25 1 

AdaBoost Number of estimators 1-1000 100 

 Base estimator Any supervised paradigm Decision tree 

 Learning rate 0.1-1 0.1 

 Boosting algorithm SAMME/SAMME.R SAMME.R 
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Figure 5.12 A generalized workflow of the drill bit selection process based on the 

machine learning algorithm. 

 
5.3.8 Performance evaluation metrics 

The evaluation metrics play an important role in the assessment of the supervised 

classifier’s performance. Conventionally, accuracy was considered a reliable 

performance evaluation parameter. However, it becomes unreliable in case of 

imbalanced data conditions where it does not account for smaller classes. Thus, 

additional statistical indicators namely, precision, recall, G-means, Matthew coefficient 
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of correlation (MCC), and F1score are also calculated to determine the performance of 

classifiers as given below. 

                           Correctly identifed data samples
Accuracy=

Total number of data samples
                                  (5.9) 

where Accuracy is a widely applied parameter for the performance evaluation of 

intelligent classifiers. 

                                  
T P

P recis io n =
T P + FP

                                                        (5.10) 

where FP is correctly classified data samples other than a particular class, and TP is 

correctly classified data to a particular class. 

                                          
TP

Recall=
TP+FN

                                                         (5.11) 

where FP is correctly classified data samples other than a particular class, FN is the 

number of samples wrongly classified to a particular class, TP is correctly classified 

data to a particular class. Higher values of precision and recall have been expected from 

every classifier. 

                        scores
Precision×Recall

F1 =2×
Precision+Recall

                                                 (5.12) 

where 1scoresF values have been estimated to ensure the authentication of precision 

and recall results. This parameter is widely applied in the area of information retrieval. 

All the above-mentioned parameters are influenced by data imbalance issues and may 

mislead classification results [142]. Therefore, MCC and G-mean have been calculated 

to ensure the reliability of the accuracy parameter.  

                       
2 2 2 2

K
k kk

K K

k k
k k

SC TS PC TC
MCC

TS PC TS TC

  


   
     
   
   



 
                                  (5.13) 
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where PCK is the number of iterations in which K class has been predicted, TCK is the 

number of iterations in which K class is correctly predicted, SC is the number of data 

samples correctly classified and TS is the number of all the data samples considered in 

the classification task. MCC parameter has been utilized for ensuring that the 

classification results are reliable and unaffected by data imbalance issues [142]. G-mean 

is also a performance indicator parameter that is not affected by data imbalance. Kubat 

et al. (1997) proposed G-mean as given below [145]. 

                                    .ra te ra teG m e a n T P T N                                   (5.14) 

where rateTP  is the true positive rate and rateTN  is the true negative rate. Both of these 

parameters are expected to be high concurrently for good classification results. Figure 

5.10 shows a generalized workflow of the drill bit selection process based on the RF 

algorithm. 

5.4 Results and discussion 

This section discusses the results obtained while selecting different types of the drill 

bit through machine learning models. Two ensemble methods namely, AdaBoost and 

RF, have been investigated for handling the complex multiclass imbalanced data 

problem associated with the intelligent drill bit selection process. Validation curves 

have been generated to identify the stable regions existing in ranges of various models’ 

parameters as shown in Figures 5.5, 5.6, 5.7, and 5.8. A detailed description of drill bit 

types has been provided in Table A-1 of the appendix. Two data-driven experimental 

scenarios have been simulated to test the intelligent bit selection approach. In the first 

experimental scenario, machine learning models were trained and tested on the 

combined dataset obtained from eight wells using 10-FCV. The input data utilized for 

training and testing of various machine learning models contain uneven training 



133 
 

samples belonging to various classes as shown in Figure 5.2. In the case of imbalanced 

data, classification accuracy becomes unreliable and unfit for the performance 

evaluation of machine learning models. Thus, average values of recall, precision, 

F1score, G-mean, and MCC, have been determined to examine the overall performance 

of various machine learning models. Table 5.5 shows the classification performance of 

standard classifiers for bit selection. It can be observed from Table 5.5 that the 

performance of NBC and KNN are the lowest among all the other classifiers. NBC has 

failed to learn about hidden dependencies or patterns among diverse variables present 

inside the training data samples related to smaller classes. Smaller classes have existed 

sparsely in the training data space due to data scarcity which also harms the 

performance of KNC with testing data.  

MLP model has been trained on 70% of input data along with 15% for validation 

and 15% as testing data. The optimum number of neurons in the hidden layer of MLP 

was determined based on minimum training error after several iterations as shown in 

Table A-2 in the appendix. MLP is three layers of a popular neural network with a 

backpropagation (BP) paradigm in its internal architecture for the training phase. BP 

trains the MLP network iteratively by adjusting the weights associated with each 

variable present inside training data. The weights adaptation is dependent on the length 

of the gradient vector calculated for error minimization in the training phase. The 

expected length of the gradient vector is dependent on the number of samples present 

for each class. During imbalanced data conditions, majority classes dominate the whole 

error minimization process during the training phase and produce larger errors for 

minority classes. Thus, the performance of MLP is adversely affected by the imbalance 

condition. MLP, NBC, and KNN classifiers are prone to become biased for majority 

classes in imbalanced data conditions. However, MLP has emerged as the second-best 
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performing single supervise classifier for drill bit selection followed by SVC in the first 

place as shown in Table 5.5. SVC is known to have some level of immunity for 

imbalanced data condition but become biased to majority classes in critically high 

imbalance condition. All of the above said supervised models fail to provide proper 

generalization and become unreliable for the selection of drill bit type. Therefore, 

ensemble methods have been investigated for drill bit selection to achieve better model 

generalization. 

 

Table 5.5 The performance of machine learning classifiers for drill bit selection in the 

first experimental scenario. 

 

AdaBoost and RF are the two ensemble methods that have been utilized for 

handling the imbalanced offset wells data for drill bit selection. RF has achieved higher 

testing accuracy than AdaBoost for bit selection as shown in Table 5.5. Although, 

ensemble methods have given much better results as compared to single supervised 

classifiers still they are affected by the imbalance conditions. Thus, both of these 

Classifiers Training 

Accuracy 

Testing 

Accuracy 

Precision Recall F1score MCC G-mean 

NBC 56.15 55.001 0.639 0.550 0.517 0.516 0.61 

KNC 63.00 60.00 0.623 0.61 0.60 0.566 0.54 

MLP 72.12 71.06 0.711 0.711 0.708 0.678 0.70 

SVC 0.83 0.82 0.79 0.78 0.81 0.83 0.81 

AdaBoost 0.96 0.90 0.90 0.90 0.91 0.90 0.90 

Random 

forest 

0.97 0.91 0.92 0.92 0.92 0.91 0.91 
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techniques were modified to enhance their capability of imbalanced data classification. 

AdaBoost and RF have been combined with an undersampling technique that reduced 

the data samples from majority classes to make the whole dataset balance. However, 

this approach has degraded the performance of both ensemble methods as their 

classification accuracies are heavily dependent upon the majority class samples as 

shown in Table 5.6. In imbalanced data condition, classifiers normally ignore smaller 

classes as fewer data samples are available during the training phase that makes difficult 

for intelligent paradigms to learn and identify any hidden pattern between variables. 

This technique may produce satisfactory results when a reasonable amount of data 

samples is present in the smaller classes.  

 

Table 5.6 Modified ensemble classifiers for the classification of imbalanced drilling 

data. 

Modified 

Ensembles 

Training 

Accuracy 

Testing 

Accuracy 

Precision Recall F1score MCC G-

mean 

Under Sampling 

AdaBoost (USA) 

0.95 0.74 0.80 0.70 0.75 0.88 0.89 

Under sampling 

RF (USRF) 

0.80 0.77 0.70 0.60 0.64 0.70 0.72 

Weighted Class 

RF (WCRF) 

0.93 0.92 0.93 0.92 0.92 0.92 0.96 

Weighted 

Bootstrap Class 

RF  (WBCRF) 

0.93 0.93 0.93 0.92 0.92 0.92 0.97 

 

In the second approach, classes are assigned weights to focus the classification 

operation on the samples of minority classes. The weights will be adjusted according to 

the inverse relationship with class frequencies in the training data. This will result in the 

formation of a weighted class RF classifier (WCRF) for the classification of imbalanced 
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data. It can be observed from Table 5.6 that the WCRF has given a better performance 

than standard RF for drill bit selection in terms of precision, recall, MCC, and G-mean. 

This indicates that WCRF has a greater generalization ability than standard RF. In the 

third approach, separate weight adjustment of classes has been performed based on its 

distribution in every bootstrap sample in place of the whole training dataset. Such a 

configuration of RF is known as RF with a bootstrap class weighting (WBCRF) 

classifier. This classifier contains the benefits of both data resampling and weighting 

techniques that are quite useful for compensating the impact of imbalance conditions. 

Training and testing results of WBCRF have shown a slight performance improvement 

when compared with WCRF. Both these approaches have provided higher MCC and G-

mean values than the standard RF paradigm as shown in Table 5.6 and Figure 5.12. 

WBCRF technique has given the best classification results as compared to other 

classifiers considered in this study. 

In the second experimental scenario, three subsets have been created from eight 

wells data containing data samples belonging to 17.5”, 12.25”, and 8.5” individual 

wellbore sections. All the earlier applied classifiers have been trained and tested on 

these subsets. The performance of conventional classifiers has been evaluated in terms 

of precision, recall, G-mean, and F1 score for every BT to understand the effect of 

imbalanced data. Tables 5.7, 5.8, and 5.9 contain drill bit selection test results for the 

17.5” section subset. It can be observed from the abovementioned tables that bit type 16 

(minority class) is hard to predict due to a lesser number of data samples available 

during the training phase. KNC, SVC, and MLP have also failed to identify BT 16 due 

to scarcity of data samples as shown in Tables 5.7, 5.8, and 5.9. Thus, G-mean values 

are recorded to be zero for SVC, KNC, and MLP as it is clear identification of the 

development of unreliable biased majority class classifiers.  
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Figure 5.13 MCC and G-mean scores of machine learning models considered in this 

study for the first experimental scenario. 

 
Drill bit 16 is intentionally discussed for understanding the effects of data 

imbalance arise while drilling through the thin lithofacies layer. The subsurface 

formations have varied thickness patterns in their natural state which results in random 

unequal data samples for the training phase. Therefore, the uneven distribution of 

training data has been particularly considered to evaluate the worst to the best 

performance of each classifier. Uneven data samples for various bit types (class labels) 

in training data make classification difficult for machine learning models [139]. Drill bit 

selection has been formulated as a multiclass classification problem with 19 diverse bit 

types as class labels as shown in Table A-1. However, large fluctuation in the values of 

precision, recall, F1score can be observed from Tables 5.8 and 5.9. Standard RF has 

shown good classification performance even for bit type 16 due to the presence of 

random bootstrap resampling technique in its internal architecture. RF has given the 

best prediction performance for 17.5” section subset with good immunity to data 
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imbalance conditions. Further, WBCRF has also been evaluated for 17.5” datasets that 

have given more accurate results with stable values for precision, recall, and F1 score.  

 

Table 5.7 The screening of 17.5” bits through RF and WBCRF models. 

RF WBCRF 

Bit type Precision  Recall F1score Bit type Precision  Recall F1 score 

1 1.00 1.00 1.00 1 1.00 1.00 1.00 

9 0.99 1.00 0.99 9 1.00 1.00 1.00 

15 0.96 1.00 0.98 15 0.96 1.00 0.98 

16 1.00 0.40 0.57 16 1.00 0.70 0.71 

19 1.00 0.99 0.97 19 1.00 1.00 0.99 

Average 0.99 0.88 0.91 Average 0.99 0.94 0.93 

Accuracy 0.98 G-mean 0.83 Accuracy 0.99 G-mean 0.85 

 

Table 5.8 The screening of 17.5” bits through KNC and NBC models. 

KNC NBC 

Bit type Precision  Recall F1sc

ore 

Bit type Precision  Recall F1 

score 

1 0.98 0.93 0.96 1 0.99 0.77 0.87 

9 0.68 0.63 0.65 9 0.60 0.60 0.60 

15 0.67 0.92 0.92 15 0.47 0.86 0.61 

16 0.00 0.00 0.00 16 0.50 1.00 0.67 

19 0.57 0.56 0.56 19 0.77 0.72 0.74 

Average 0.58 0.61 0.59 Average 0.67 0.79 0.70 

Accuracy 0.81 G-mean 00 Accuracy 0.75 G-mean 0.779 
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Table 5.9 The screening of 17.5” bits through MLP and SVC models. 

SVC MLP 

Bit type Precision  Recall F1score Bit type Precision  Recall F1 score 

1 1.00 0.98 0.99 1 0.99 0.95 0.97 

9 0.91 0.74 0.82 9 0.79 0.81 0.80 

15 0.86 0.98 0.92 15 0.80 0.98 0.88 

16 0.0 0.0 0.0 16 0.00 0.00 0.00 

19 0.79 0.94 0.86 19 0.83 0.80 0.81 

Average 0.71 0.73 0.72 Average 0.68 0.71 0.69 

Accuracy 0.92 G-mean 0.00 Accuracy 89 G-mean 0.00 

 
In the data subset of the 12.25” section, performance for every classifier has been 

recorded as shown in Tables 5.10, 5.11, and 5.12. Higher fluctuations in the values of 

precision, recall, and F1 score has been recorded in classification results. This indicates 

that these sections are physically challenging drilling zones. RF and WBCRF have 

given impressive results for the classification of these critical geological zones as shown 

in Tables 5.10, 5.11, and 5.12. In this section, BTs 6 and 11 are minority classes that are 

hard to classify. However, only MLP becomes a bias classifier as it fails to classify any 

samples for BT 11 as shown in Figure 5.13.  

Table 5.10 The screening of 12.25” bits through RF and WBCRF models. 

RF WBCRF 

Bit type Precision  Recall F1score Bit type Precision  Recall F1 score 

2 0.96 0.98 0.97 2 0.96 0.99 0.97 

4 0.99 0.96 0.97 4 0.98 0.96 0.97 

6 0.86 0.86 0.86 6 1.00 0.71 0.83 

10 0.79 0.81 0.80 10 0.80 0.86 0.83 

11 0.80 0.57 0.67 11 1.00 0.73 0.72 

17 0.75 0.80 0.77 17 0.78 0.83 0.81 

Average 0.86 0.83 0.84 Average 0.92 0.85 0.86 

Accuracy 0.91 G-mean 0.82 Accuracy 0.92 G-mean 0.84 
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Table 5.11.The screening of 12.25” bit through KNC and NBC models. 

KNC NBC 

Bit type Precision  Recall F1score Bit type Precision  Recall F1 score 

2 0.80 0.84 0.82 2 0.73 0.44 0.55 

4 0.78 0.86 0.81 4 0.69 0.56 0.62 

6 0.62 0.71 0.67 6 0.67 0.86 0.75 

10 0.85 0.79 0.81 10 0.38 0.60 0.46 

11 1.00 0.43 0.60 11 0.22 0.86 0.35 

17 0.78 0.60 0.68 17 0.38 0.47 0.42 

Average 0.81 0.70 0.73 Average 0.51 0.63 0.52 

Accuracy 0.79 G-mean 0.685 Accuracy 0.53 G-mean 0.60 

 

Table 5.12 The screening of 12.25” bits through SVC and MLP classifier. 

SVC MLP 

Bit type Precision  Recall F1 score Bit type Precision  Recall F1 score 

2 0.98 0.98 0.98 2 0.81 0.85 0.83 

4 1.00 0.99 0.99 4 0.77 0.94 0.85 

6 0.86 0.86 0.86 6 0.75 0.43 0.55 

10 0.94 0.74 0.83 10 0.79 0.81 0.80 

11 0.75 0.86 0.80 11 0.00 0.00 0.00 

17 0.74 0.97 0.84 17 0.93 0.43 0.59 

Average 0.88 0.90 0.88 Average 0.67 0.58 0.79 

Accuracy 0.94 G-mean 0.80 Accuracy 0.79 G-mean 0.00 

 

The geological lithofacies existing in section 8.5” are found to be the most 

challenging formations for drilling operations due to several faults and unstable zones 

existing along its depths. The 8.5” section formations have been reported to be unstable 

because they are made up of softer rocks such as claystone, sandstone, siltstone, tuff, 

marl, limestone, and argillaceous clay contents. Certain incidents of gas leaks and drill 

string stuck ups were also recorded while drilling 8.5” section of the wells with high 

stick slips conditions in its upper formations. Polycrystalline diamond compact bits 
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(PDC) were primarily utilized for drilling softer 8.5” section because of their higher 

ROP values and stable drilling operation (Table A-1). However, it becomes difficult for 

the driller to choose the right PDC bit type as varieties of bit models are available while 

planning for drilling operations. The pattern recognition has become difficult in the 8.5” 

section as the performance of all the classifiers has shown more fluctuations in their 

precision and recall values due to heterogeneity of lithofacies as shown in Tables 5.13, 

5.14, and 5.15. Here, BT 12 and 13 are the minority classes for which KNC and MLP 

failed to identify any samples while SVC and NBC have shown poor prediction 

performance as shown in Figure 5.13. Finally, worst-to-best accuracy of various 

classifiers in second data-driven scenario can be given as: WBCRF (0.92-0.99), RF 

(0.91-0.98), SVC (0.88-0.94), MLP (0.74-0.89), KNC (0.61-0.81), and NBC (0.53-

0.75). RF and WBCRF have shown great immunity for data imbalance conditions and 

successfully maintained their performance even in the critical 8.5” section. Recently, 

hybrid drill bits (e.g. Kymera) have been developed that combined the properties of 

conventional PDC bit and roller cone bit types [142]. These hybrid bits seem to be a 

good solution for drilling problematic 8.5” section while maintaining the stability of 

drilling operations. 

Table 5.13 The selection of 8.5” bits through RF and WBCRF models. 

RF WBCRF 

Bit type Precision  Recall F1score Bit type Precision  Recall F1 score 

3 0.91 0.99 0.95 3 0.92 0.99 0.95 

5 0.98 0.87 0.92 5 0.98 0.89 0.93 

12 0.93 0.81 0.87 12 0.93 0.81 0.87 

13 1.00 0.67 0.80 13 1.00 1.00 1.00 

18 0.89 0.98 0.93 18 0.94 0.98 0.96 

Average 0.94 0.86 0.93 Average 0.95 0.93 0.94 

Accuracy 0.93 G-mean 0.855 Accuracy 0.94 G-mean 0.931 
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Table 5.14 The selection of 8.5” drill bits through KNC and NBC models. 

KNC NBC 

Bit type Precision  Recall F1score Bit type Precision  Recall F1 score 

3 0.74 0.92 0.82 3 0.71 0.93 0.80 

5 0.52 0.42 0.46 5 0.80 0.51 0.62 

12 0.24 0.25 0.24 12 0.39 0.69 0.50 

13 0.00 0.00 0.00 13 0.43 0.33 0.38 

18 0.60 0.61 0.60 18 0.74 0.57 0.64 

Average 0.42 0.44 0.43 Average 0.61 0.61 0.59 

Accuracy 0.61 G-mean 0.00 Accuracy 0.68 G-mean 0.573 

 

Table 5.15 The selection of 8.5” bits through SVC and MLP classifiers. 

SVC MLP 

Bit type Precision  Recall F1score Bit Type Precision Recall F1 score 

3 1.00 0.99 0.99 3 0.79 1.00 0.88 

5 0.96 0.84 0.89 5 0.90 0.49 0.64 

12 0.77 0.62 0.62 12 0.57 0.50 0.53 

13 0.67 0.22 0.33 13 0.00 0.00 0.00 

18 0.72 0.96 0.82 18 0.65 0.86 0.74 

Average 0.82 0.73 0.75 Average 0.58 0.57 0.56 

Accuracy 0.88 G-mean 0.643 Accuracy 0.74 G-mean 0.00 
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Figure 5.14 Summary of G-mean scores achieved by intelligent models for both 

experimental scenarios.   

 

5.5 Summary 

A novel data-driven approach has been proposed using the fusion of data 

resampling technique and ensemble method for handling the imbalance issues of 

complex drilling data. The problem of imbalanced training data results in the 

development of unreliable biased classifiers that are unfit for practical field applications. 

Two experimental data-driven scenarios have been specially designed and tested to 

confirm the generalization of the proposed approach for drill bit selection. An extensive 

comparative study has been performed to evaluate the performance of popular 

classifiers for the screening of drill bits. After a meticulous comparison of results, the 

following important conclusions can be drawn as given below: 

 WBCRF technique has given the most impressive performance during automatic bit 

type selection with testing accuracy ranges from 92% to 99%, and G-mean (0.84–

0.97) for various experimental scenarios. 
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 The large fluctuations in the performance of classifiers have been recorded in the 

8.5” section in terms of precision, recall, and F1 scores. It is observed that drill bit 

selection becomes difficult in the lower formations due to uncertainty in subsurface 

conditions. 

 Data imbalance condition exists due to the drilling of thin lithofacies that harm the 

performance of classifiers. 

 WBCRF has given good prediction results for screening drill bit even for critical 

drilling zones. 

 The performance of conventional classifiers is largely affected by data imbalance 

issues. Conventional classifiers can’t be trusted for the drill bit selection, especially 

for critical drilling zones. 

 RF has shown great immunity for data imbalance conditions and successfully 

maintained its performance even in the critical 8.5” section. 

 The proposed approach can also be applied over any other oil and gas fields to 

automate the drill bit selection, which will minimize human error, time, and drilling 

cost. 

 The combination of ensemble methods with the data resampling technique results in 

modified ensemble classifiers that are found to be efficient even in highly 

imbalanced conditions. 

 

 

 

 

 



145 
 

Chapter 6 

Assessment of Machine Learning Models for Forecasting of 
Hydrocarbon Production 

 

6.1 Introduction 

Hydrocarbon production forecasting is an important task for reservoir engineers to 

measure the performance of installed production systems. It also plays a vital role in the 

estimation of the remaining hydrocarbon inside the producing reservoir formations, 

optimization of production operations, reservoir management, and business planning 

[147]. Continuous recording and monitoring of daily hydrocarbon production data are 

usually done to forecast future well production. However, it is a challenging task due to 

the reservoir’s heterogeneity and complex interactions of the reservoir with hydrocarbon 

production systems [148]. The production of multiphase fluid through surface choke is 

also influenced by the behavior of the producing reservoir formation in static and 

dynamic conditions [148]. Accurate assessment of reservoir properties, itself, is a 

problematic issue and its heterogeneity adds uncertainties in all types of reservoir 

measurements [149-150]. In the petroleum domain, production forecasting has always 

been considered a thought-provoking and popular problematic task due to the 

complexity of acquired production data [151].   

     Wellhead chokes are widely installed to control the oil and gas flow rates on the 

surface, to maintain downhole pressure, and also to produce back pressure that protects 

the reservoir from formation damage [152-155]. In order to regulate the flow rate for 

meeting various regulations, chokes are installed to minimize various problems owing 

to varying production rates which may be slugging of surface equipment, avoid excess 
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sand production caused due to high drawdown, and water/gas coning [156-157]. A 

significant part of the production optimization relies heavily on the study of the flow 

behavior through the chokes i.e. whether the flow is subsonic or sonic [158]. The 

critical pressure ratio is calculated to distinguish between sub-sonic and sonic flow 

conditions. It is approximately 0.55 for natural oil and gas above which subsonic 

condition prevails. When the fluid velocity in a choke matches the traveling velocity of 

sound in the fluid under in-situ conditions then such type of flow is termed sonic flow 

[159]. Under sonic flow conditions, the pressure wave downstream of the choke cannot 

go upstream through the choke because the medium is traveling in the reverse direction 

at a similar velocity [8]. 

     Several correlations have been developed theoretically or empirically using 

experimental or field production data to study the simultaneous oil and gas flow 

behavior in sonic and sub-sonic conditions through chokes. Tangren et al. [48] 

contributed the first study on wellhead chokes and their effects on the production rate of 

hydrocarbons for the continuous liquid phase. Gilbert [49] correlated oil production rate 

with wellhead surface choke size, gas oil ration, and wellhead pressure. Ros [50] 

reported that a correlation existed between upstream pressure, restriction size of choke, 

and flow rate of hydrocarbon. Several other researchers also proposed similar 

correlations for the oil production rate using diverse field data [51-55]. Al-Attar and 

Abdul Majeed [56] tested several proposed correlations to provide the best fitting for 

East Baghdad Oil field production data. They found that the revised correlation was 

similar to the Gilbert equation with different constants values. Mirzaei-Paiaman and 

Salavati [42] proposed a newer correlation for the flow of oil through wellhead chokes 

using Persian oil field data. All the correlations have been developed either theoretically 

or empirically for wellhead chokes and multiphase hydrocarbon production based on 
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experimental data or field data [42][49-54]. Theoretical correlations developed using 

field data require a large number of parameters collection from fields which is a time-

consuming and costly affair. On the other side, experimentally developed empirical 

correlations lack generalizability due to the limited range of experimental data. 

Therefore, advanced machine learning techniques have been employed to model the 

production rate of hydrocarbon with the surface installed chokes.  

     Researchers have widely utilized machine learning techniques to correlate variables 

that have complexities in their relationships. Machine learning techniques have 

achieved more reliable and generalized prediction models for several engineering 

domains such as reservoir characterization, drilling automation, etc. Morzaei-paiaman 

and Salavati, [42] applied the Artificial neural networks (ANN) model for the 

estimation of the oil production flow rate. He also compared the prediction results of 

ANN with the correlations proposed by Mirzaei-Paiaman [43], Gilbert [49], Ros [50], 

Achong [51], and Baxendell [52] to prove that ANN results are more accurate than 

empirical and theoretical correlations. Elhaj et al. [53] studied ANN along with Fuzzy 

logic, Functional networks, Decision tree, and Support vector machines for single gas 

flow rate forecasting. Choubineh et al. [35] applied hybrid ANN training-based 

optimization for modeling the hydrocarbon flow rate.  Table 6.1 contains popular 

correlations for the determination of oil and gas flow rate. 

     Production forecasting has always grabbed the attention of reservoir engineers, 

however, only limited applications of machine learning models can be found in the 

literature. In this chapter, a comparative investigation of performances has been done 

among five popular machine learning models (viz. ANN, SVR, LSSVR, extremely 

randomized tree (ExtraTree), and RF) in quest of higher prediction accuracy for 

production forecasting. All of these techniques are widely accepted and reported for 
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estimation purposes in reservoir characterization and drilling automation [160-162]. The 

performance of the above-mentioned machine learning models has been evaluated using 

production data obtained from the Norwegian Volve oil and gas field. ExtraTree and 

Random forest paradigms have been applied the first time for production forecasting as 

per the knowledge of the authors. This study also examines the importance and 

contribution of each input (predictor) variable existing in production data for the pattern 

estimation of hydrocarbon production rate. 

6.2 Random forest and ExtraTree 

Machine learning models are pattern recognition techniques that are primarily utilized 

to solve problems involving detection, identification, and estimation tasks. These 

intelligent techniques are capable of finding the relationship between field variables 

having complex datasets [163]. In this study, five popular machine learning algorithms 

have been investigated for the estimation of the daily production of the Norwegian oil 

and gas field. This section provides a brief introduction of Random forest and Extremely 

Randomized Trees models utilized for the prediction of daily oil and gas production. 

6.2.1 Random forest and Extremely randomized trees 

Random forest is one of the most popular meta-learner developed by Leo Breiman 

[164]. It can be applied for categorical data as a classification model and also for 

continuous response target data as a regression model. Random forest is 

computationally appealing in nature due to fast computational speed, lesser tuning 

parameters, easily estimable generalization error, handling of high dimensional data, 

can measure predictor variable importance, etc. [165]. It is an ensemble of Decision 

trees in which each tree is dependent on random input variables. It uses the bootstrap 

technique for the generation of random data subsets with the replacement with the 

training phase.  The estimation function is defined in terms of the Loss function that is 
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needed to be minimized. In the case of regression, minimizing expected error and 

considering square error loss gives conditional expectations. RF is an ensemble-based 

meta-learner that is composed of several base learners viz. decision trees. These base 

learners are combined together in a single architecture known as ensemble learners. The 

outcomes of base learners are averaged out to provide the final estimation results in 

regression. Decision Trees are utilized as base learners to split the predictor data space 

on individual variables. The root node of the tree contains all the predictor data space. 

The non-partitioning nodes are called terminal nodes that have the final partition of 

input data space. In the case of regression, the splitting is done based on the mean 

squared residual at the node. The best possible split in regression is determined by 

sorting the values of the predictor and splitting every distinct consecutive value of pairs. 

The algorithm of Random forest is given below as suggested by Breiman[164], Cutler, 

et al.[175] and Ho [166]. 

     ExtraTree is also an ensemble learner containing a forest of unpruned Decision trees 

similar to a Random forest ensemble with certain constructional dissimilarities. It has 

two major differences as compared to other decision/regression trees based paradigms. 

First, each node is split depending upon a fully random cut-point.  Secondly, it utilizes 

whole learning data samples for growing forest trees randomly with random samples 

instead of a bootstrap replica. ExtraTree utilizes strong randomization for the training of 

trees to reduce error due to bias-variance [167-168]. Machine learning researchers 

reported that ExtraTree may outperform RF in certain cases of pattern estimation [168]. 

Thus, ExtraTree has also been considered in this study to challenge the Random forest 

algorithm. A detailed explanation of ExtraTree can be found in the research work of 

Geurst et al.  [168]. 
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6.3 Case study of Volve oil and gas field production 

This study utilizes the technical production data downloaded from the Equinor website 

for the development and testing of machine learning models to estimate daily 

production rates. The downloaded production data in a format of excel contains 6488 

production data samples of seven production wellbores of the Volve field. The data 

samples having null and missing values were removed from downloaded production 

data as they were not suitable for modeling purposes. Downloaded production data were 

reduced to 4167 data samples that were utilized as input data for the training and testing 

of machine learning models in this study. The production data were collected from 

seven wellbores of Volve fields viz. 15/9-F-1C, 15/9-F-11H, 15/9-F-12H, 15/9-F-14H, 

15/9-F-15D, 15/9-F-4AH, and 15/9-F-5AH. Table 6.2 contains a summary of various 

research works related to production forecasting through surface installed chokes. The 

statistical description of Volve Production data is shown in Table 6.3. Figure 6.1 shows 

the location of the Volve oil and gas field at the North Sea adapted from Ravasi et al. 

[169].   

 

Figure 6.1 Volve oil and gas field located at North Sea [169]. 
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Table 6.1 Popular correlations for the determination of oil and gas flow rate. 

S. No. Empirical Correlation Publication 

1. 
1.89

0.546

*
0.1*Rate

WHP CS
Q

GOR
   Gilbert (1945) 

2. 
1.93

0.546

THP*
9.56*Rate

CS
Q

GOR
  Baxendell 1957 

3. 
2

0.5

*
0.574*Rate

WHP CS
Q

GOR
  Ros (1960) 

4. 
1

0.65

THP*

0.262*Rate

CS
Q

GOR
  Achong, (1961) 

5. 
.483 0.707

0.474

20.696 * *o
RATE

wh

Q
CS

P


   Al-Towailib (1992) 

6. 
1.9215

.
0.5334

0.087607* WH
rate

P d
Q

GOR
   Mirzaei-Paiaman and Salavati (2013) 

 

Table 6.2 Summary of various research works related to production forecasting through 

surface installed chokes. 

S. 
No. 

Author(s) Year Methods Input Variables Production 
Data 

1. Tangren 1949 Theoretical  Pressure ratio, fluid Velocity, 
volume ratio, density ratio 

Laboratory 

2. Gilbert 1954 Empirical  WHP, CS and GOR California 
field 

3. Baxendell 1957 Empirical THP, CS, and GOR Laboratory 

4. Ros 1960 Theoretical  WHP, CS, and GOR Laboratory 

5. Poettmann 1963 Empirical  GOR, WHP, and CS Field data 
(108) 

6. Omana 1969 Empirical CS, Upstream Pressure, and 
WHT 

Laboratory 

7. Fourtunati 1972 Theoretical GOR, downstream pressure, 
and WHP 

Field data 

8. Ashford 1974 Theoretical  CS, GOR, pressure, 
temperature, discharge 

coefficient, specific gravity 

Oil field test 
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9. Al-Attar 1988 Empirical GOR, WOR, oil gravity, gas 
gravity, CS, upstream 
pressure, and average 
temperature. 

Baghdad field 
(155) 

10. Surbey 1988 Empirical Choke setting, upstream 
pressure, and temperature 

Laboratory 

11. Osman 1990 Empirical CS, WHP, and WHT Laboratory 

12. Perkins 1993 Empirical Pressure, temperature, gas 
specific gravity, oil specific 

gravity, etc. 

Middle East  

field data 
(1432 )  

13. Al-Towailib 1994 Empirical GOR, upstream pressure, CS, 
and downstream pressure 

Middle east 
filed data 

(3554) 

14. Mirzaei-
Paiaman and 

Salavati 

2013 Empirical Upstream pressure, CS, 
GOR, oil specific gravity, 
and gas specific gravity  

Persian oil 
and gas fie; 

15. Al-Khalifa et 
al. 

2013 ANNs GOR, CS, and upstream 
pressure 

Various field 
data (4031) 

16. Nejatian et 
al.  

2014 LS-SVM Reynolds number, the ratio 
of choke diameter to pipe 
diameter, and choke flow 

coefficient 

Southwest 
Louisiana 

(512) 

17. Gorjaei et al. 2015 PSO-
LSSVM 

GOR, CS, and WHP Iranian fields 
(276) 

18. Elhaj et al. 2015 ANN, Fuzzy 
logic, SVM, 
Functional 

network, and 
Decision tree 

CS, upstream and 
downstream pressures, 

tubing temperature, and the 
specific gravity of the gas 

Sudan (276) 

19. Mirazaei-
Paiaman and 

Salavati 

2013 ANNs WHP, CS, and GOR Southwest 
Iran and   

Northern 
Persian Gulf 

20. Ghorbani et 
al. 

2017 Firefly 
Optimization 

algorithm 

GOR, CS, and WHP Ghawar field  

21. Choubineh et 
al. 

2017 Teaching 
learning 

based 
optimization 
and ANNs 

CS, specific gravities of oil 
and gas, GOR, WHP, and 

WHT 

South Iran 
(113) 
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21. Rashid et al.  2019 ANNs WHP, GOR, and CS Unknown 
Field (276) 

22. Wang et al.  2019 Deep neural 
networks 

Big database: well 
information, reservoir 

thickness, hydraulic fracture 
parameters, fracturing 
system, and proppant 

information  

Bakken shale 
reservoir data 

 

Table 6.3 The statistical description of Volve production data utilized in this study. 

S. No. Predictor variables Units Maximum Minimum  

1. Downhole pressure (DP) psi 308.1 0 

2. Downhole temperature (DT) celsius 107.51 0 

3. Tubing size (TS) inch 259.09 26.12 

4. Annulus pressure (AP) bar 30.0198 0.06 

5. Wellhead pressure (WHP) bar 120.889 0 

6. Wellhead temperature (WHT) celsius 92.0711 7.04 

7. Choke size (CS) (1/64) inch 106 0.5 

8. Gas oil ratio (GOR) scf/STB 6177.5 103 

9. Oil production rate (OPR) STB/day 5889 4.3 

10. Gas production rate (GPR) scf/day 83598 856 

 

6.4 Methodology  

A rigorous comparative study has been performed to evaluate the performance of five 

machine learning techniques viz. ANNs, SVR, LSSVR, ExtraTree, and Random forest. 

The data-driven experimental workflow for production forecasting is broadly 

partitioned into two stages i.e. (a) data preprocessing and (b) model preparation. Both of 

the experimental stages are explained in detail as given below. 

6.4.1 Data preprocessing 

Data processing of input data helps the machine learning algorithms to understand and 

learn the hidden patterns in a better way to ensure that all the input variables will obtain 
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equal importance from machine learning models. A dataset of 4167 samples has been 

utilized after eliminating null and garbage values for modeling hydrocarbon production 

rate (PR) through popular machine learning techniques viz. (ANN, SVR, LSSVR, 

ExtraTree, and RF). Machine learning models have been developed for production 

forecasting from surface measured predictor variables viz. DP, DT, TS, AP, WHP, 

WHT, CS, and GOR with production rate (PR) as a target/ response variable as shown 

in Table 6.3. These variables are recorded on the surface of producing wells that are 

used for modeling oil and gas flow rates.  Surface measured predictor variables are 

modeled independently for OPR and GPR forecasting to investigate the behavior of 

machine learning models. Initially, input production data were normalized to reduce the 

effects of larger values on smaller ones. Normalization scales down all the values of 

predictor variables between zero and one. The formula for normalizing production data 

is given below. 

                                      Min
Norm

Max Min

X X
X

X X





                                                           (6.1) 

where XMax is the maximum value of predictor variable X, XMin is the minimum value 

of input variable X and XNorm is the normalized value of X.  

6.4.2 Attribute selection 

After the normalization of input data, different attributes were statistically tested to find 

any redundant variables that could be eliminated to reduce dimensionality and 

computation time. Table 6.4 presents the statistical analysis of input predictor variables 

to understand their contribution to the estimation of OPR. The input variables were 

provided one by one in each trial to measure their impact on the estimation of OPR. The 

effects of each input variable were studied using conventional statistical analysis using 

correlation of coefficient (CC) calculation between predictor variables and OPR. Table 
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6.4 shows the effects of adding predictor variables one by one in the training data on the 

performance of the RF technique.  

Table 6.4 Trail test to identify input variables that are contributing to oil production 

estimation. 

S. No. Input parameters 
Training 

CC 

Training 

RMSE 

Testing 

CC 

Testing  

RMSE 

1. DP, DT 0.9873 0.0405 0.9002 0.1091 

2. DP,DT, TS 0.9947 0.0263 0.9567 0.0266 

3. DP, DT, TS, AP 0.9958 0.0203 0.9672 0.0632 

4. DP, DT, TS, AP, WHP 0.996 0.0226 0.9687 0.0619 

5. DP, DT, TS, AP, WHP, WHT 0.9977 0.0169 0.9829 0.0459 

6. 
DP, DT, TS, AP, WHP, WHT, 

CS 
0.9979 0.0164 0.9839 0.0446 

7. 
DP,DT, TS, AP, WHP, WHT, 

CS, GOR 
0.9979 0.0164 0.9843 0.044 

 

     Similar results can also be found using attribute selection algorithms such as the 

Relief algorithm [170], a forest of trees [168], etc. for identifying and eliminating 

irrelevant attributes from production data. Statistical analysis for the selection of 

important attributes is a time-consuming affair. Therefore, algorithm-based attribute 

selection techniques are more recommended over conventional statistical analysis as 

they consume less time. In this study, the Relief algorithm has been utilized for 

understanding the importance of different predictor variables for the pattern estimation 

of oil and gas flow rates. It assigned weights and ranks to all the input predictor 

variables according to their contribution to the pattern estimation of production rate. It 

also helps to identify conditional dependencies and the existing correlation between 

predictor variables and target outputs (OPR/GPR)[168].  The rank and weights assigned 
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by the Relief algorithm are case-specific in nature and may vary with production data of 

different reservoirs. Figure 6.2 shows the contribution of each predictor variable for the 

pattern estimation of PR utilizing the relief algorithm. All the predictor variables were 

assigned positive weights by the relief algorithm as shown in Figure 6.2, therefore, each 

of them was utilized for training and testing of machine learning models. Enthusiastic 

readers are advised to refer to cited research papers for a detailed explanation of the 

relief algorithm [168-170]. 

 

Figure 6.2 Predictor variables arranged according to their contribution for production 

forecasting. 

6.4.3 Model preparation   

Researchers have always shown concerns about overfitting and underfitting conditions 

that reduce the generalizability of computationally intelligent machine learning models 

during classification and regression tasks. It is suggested that the chances of overfitting 

or underfitting can be reduced using cross-validation techniques [171]. Several cross-

validation strategies such as K-fold cross-validation, hold out validation, leave one out 

validation, etc. are available for splitting pre-processed input data into training and 

testing subsets. After attribute selection, the input data were organized into random 
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training and testing subsets using a 10-fold cross-validation technique to reduce the 

chances of overfitting and underfitting conditions. In 10-fold cross-validation, the pre-

processed production data were split randomly into ten equal-sized smaller subsets of 

data (K=10). Out of ten subsets, nine subsets were utilized for the training of a machine 

learning model and the tenth subset for validation of the trained machine learning 

model. This whole procedure was repeated ten times until all the data subsets were 

acted at least once for the validation of the trained machine learning model. All the 

machine learning models were trained and tested on these ten pairs of subsets iteratively 

and final results were decided by averaging their performances with these subsets 

(K=10). K-fold cross-validation has been reported to be maximum helpful in variance 

error reduction as compared to other cross-validation techniques. During the training 

phase, parameters of each intelligent model were optimized using a Grid search 

optimizer to minimize the prediction error, to achieve the best possible performance, 

and to accomplish optimally tuned models. Proper optimization of models’ parameters 

is an essential step to maintain their performance for the prediction of unseen test 

datasets.  The performance of machine learning paradigms was evaluated by three 

statistical performance indicators, viz. the coefficient of correlation (CC), root mean 

square error (RMSE), and mean absolute error (MAE), as given below. 

A. Coefficient of correlation (CC) 
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                                              (6.2) 

where PRm and PRp are measured and predicted production rate of oil or gas. CC 

measures the correlation between PRm and PRp variables which ranges between one 
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and zero. Values nearer to one represent good correlation and vice versa. CC indicates 

towards generalization performance of machine learning models.  

B. Root mean square error 

                                      2

1

1 n

m p
i

RMSE PR PR
n 

                                                  (6.3) 

where, RMSE is an error function, primarily utilized for measuring the prediction error 

of the machine learning model and has an inverse relation with the prediction 

performance of the model.   

C. Mean absolute error 

                                        
0

1 n
m p

mi

PR PR
MAE

n PR


                                                    (6.4) 

MAE is also an error function that helps to compare the predictions with measured 

target variables.  Readers should keep in mind that all the values are calculated after the 

normalization of predictor variables and response variables data. Therefore, RMSE and 

MAE have also been reported on a similar scale accordingly. Figure 6.3 shows a 

generalized data driven architecture for production forecasting. 
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Figure 6.3 A Generalized data driven architecture for production forecasting. 

6.5 Results and discussion  

Initially, multiple linear regression (MLR) models have been developed to correlate 

predictor variables with the oil and gas production rate. These preliminary MLR models 

are also considered in this study as reported in several earlier research works [172-174] 

[175]. The equation (6.5) and (6.6) models OPR and GPR using surface measured 

predictor variables obtained from Volve data.  

OPR=-1.3806*DP+1.6776*DT-0.156*AP+0.8177*WHT+0.9163*CS-1.4682*GOR-

0.8194                                                                                                                         (6.5) 

GPR= -1.4021*DP1.6672-0.1545*AP+0.8295*WHT+0.933*CS-1.2516*GOR-0.82 

                                                                                                                                    (6.6) 

However, the estimation accuracy of the MLR model, for forecasting OPR, was found 

to be the lowest (training CC=0.7816 and testing CC=0.7724) and the highest prediction 

error. (Training/Testing RMSE = 0.1557/0.1585, and Training/Testing MAE = 

0.1069/0.1074). ANNs are one of the most widely applied machine learning models in 
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the oil and gas industry. Several configurations of ANNs were trained and tested for the 

estimation of PR. The pre-processed input data were partitioned into training data 

(70%), validation data (15%), and testing data (15%). Partitioned datasets were 

provided to feedforward backpropagation ANN model for its training, validation, and 

testing phases.  During the training phase, several trials were performed for the selection 

of appropriate transfer function, network function, number of hidden layers, and 

neurons. Table 6.5 contains optimized values of different parameters of the ANN model 

for production forecasting. The configurations 8-10-1 were found the most suitable 

architecture of ANN for the estimation of daily hydrocarbon production as shown in 

Figures 6.4 and 6.5.  

 

Figure 6.4 ANNs architecture (8-10-1) found suitable for production forecasting of oil 

and gas flow through the surface installed choke. 
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(a) Regression plot for OPR                               (b) Regression plot for GPR 

   
 

                   (c) Performance plot for OPR.                      (d) Performance plot for GPR. 

Figure 6.5 Regression and Performance plots for training (70%), validation (15%), and 

testing (15%) of ANN (8-10-1) for production forecasting. 

    
Figure 6.5(a) and 6.5(b) show regression plots of ANN with training, validation, and 

testing datasets during oil and gas forecasting. Training function and activation-transfer 

function were also tested along with the number of neurons. It was found that Trainlm 

and Tansig functions combination gave the best prediction results with a high 

convergence rate. Figure 6.6 shows the effects of increasing the number of neurons in 

the hidden layer architecture of ANN on its performance during the training and testing 
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phase. Figure 6.5(c) and 6.5(d) shows the effects of epoch or iterations on the 

performance of ANN models for production forecasting. ANN is one of the most 

popular machine learning algorithms in the petroleum domain, however, it has its own 

limitations such as overfitting, stuck up in local minima/ maxima, etc. [163]. Therefore, 

SVR was considered to develop a more generalized and reliable model for the 

estimation of PR. The prediction results of ANN for production forecasting are 

summarized in Table 6.6 and 6.7.  

Table 6.5 The optimized values of different parameters of machine learning models 

implemented for production forecasting. 

S. 

No. 

Regression 

Models 

Model Parameter Search Range Optimized 

value 

1. ANN Transfer Function N/A Tansig 

  Training function N/A Trainlm 

  Number of hidden layers 1-10 1 

  Adaption learning function N/A Learngdm 

  Number of neurons 1-100 10 

  Configuration N/A 8-10-1 

2. SVR Kernel function Linear, 

Polynomial, and 

RBF kernel  

RBF function 

  Regularization parameter C 10-1000 100 

  Epsilon 0.00014-13.96 0.01 

  Gamma 0.001-10 0.5 

  Box Constraints 0.001-1000 0.001 

3. LSSVR Kernel function Linear, 

polynomial, 

RBF kernel 

RBF kernel 

  Regularization parameter 1-1000 20 

  Gamma 0.001-10 0.8 
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4. ExtraTree Number of randomly 

selected  attributes at each 

node  

0-9 8 

  Minimum samples required 

for the split at each node 

0-300 2 

  Maximum depth of the tree 0-100 None* 

  Number of base learners or 

estimators 

1-100 50 

  Minimum samples leaf size 1-400 1 

5. RF Maximum tree depth 1-None None* 

  Number of base learners or 

estimators 

1-100 40 

  Minimum samples leaf size  1-300 1 

  Minimum sample required 

for the split at each node 

0-300 2 

     The whole pre-processed input data were partitioned into 10 random training and 

testing datasets using a 10-fold cross-validation technique to avoid overfitting and 

underfitting conditions of machine learning models. The limitations of ANNs were 

overcome by applying SVR and LSSVR models for production forecasting of oil and 

gas. Primarily, the selection of kernel function was done before the application of the 

SVR and LSSVR model for forecasting. Appropriate kernel function helps SVR and 

LSSVR to handle the high dimensionality and nonlinearity of production data 

efficiently. RBF kernel was found suitable after several trials with different kernel 

functions for production forecasting. LSSVR and SVR were also constituted of various 

hyperplane model parameters such as gamma, regularization parameter (C), epsilon, etc. 

that were required to be optimized to enhance model performance. These parameters 

were optimized during the training phase using the Grid search optimizer available in 

the Matlab 2019b Platform. The hyperplane model parameters were optimized using a 

grid search algorithm which is a widely reported tuning algorithm in various domains 
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[176-177]. Grid search utilizes the hill-climbing approach to determine optimum 

parametric values of machine learning models. The iteration stops after reaching the 

best possible values of model parameters and can also extend its search range if values 

exist at the search boundary. The optimized values of SVR and LSSVR parameters are 

shown in Table 6.5. Figure 6.7 shows a cross-plot between actual and predicted values 

of daily oil and gas production for training and testing of the LSSVR model. The 

performance of optimized LSSVR was found better than conventional SVR and ANNs 

for OPR forecasting but it failed to outperform the ANN in the case of GPR estimation. 

Therefore, ensemble models were investigated to provide a more generalized model for 

the production estimation of oil and gas rates.    

 

Figure 6.6 Effects of the increasing number of neurons in the hidden layer of ANN 

architecture for production forecasting. 
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                              (a)                                                                         (b) 

Figure 6.7 Coefficient of correlations for (a) OPR (b) GPR using LSSVR with training 

and testing datasets for production forecasting. 

 

                  (a)                                                                       (b) 

 

                                    (c)                                                              (d) 

Figure 6.8 Effects of parameters’ variation on the performance of ExtraTree (a) 

Variation of maximum depth. (b) Variation of the number of estimators (c) Variation of 

minimum samples leaf and (d) Variation of minimum samples split. 

 

     In the quest for higher estimation accuracy, ExtraTree and RF ensembles were tested 

for production forecasting of oil/gas and also to outperform ANN, and LSSVR.  

ExtraTree algorithm employed for production forecasting was based on Geurts et al. 
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(2006) research work [168]. The main parameters on which the performance of 

ExtraTree model primarily depends are the minimum number of data samples required 

for splitting any node, the number of decision trees or estimators (base learners), the 

maximum depth of the tree, etc. Figure 6.8 shows the effects of the variation of four 

important parameters on the performance of ExtraTree. The optimum values of these 

parameters are shown in Table 6.5. The training and testing results clearly reveal that 

ExtraTree outperformed the ANN, SVR, and LSSVR for the estimation of oil and gas 

production. Further, an RF ensemble was implemented to challenge the performance of 

ExtraTree for production forecasting. The performance of RF was also dependent upon 

its model parameters such as the number of estimators, minimum split at each tree node, 

minimum samples required for splitting, learning rate, etc. 

     In this study, 40 decision trees have been utilized for the development of an RF 

ensemble estimator to predict the oil and gas production rate. Certain researchers 

suggested that large numbers of base learners viz. decision tree increases stability for 

petrophysical applications, [178]. However, the performances of RF and ExtraTree were 

saturated after 40 and 50 estimators for production forecasting as shown in Figures 6.7 

and 6.8. The complexity, stability, and computational cost of both ensembles were also 

controlled by the maximum depth of decision trees or estimators. The maximum depth 

parameter of RF and ExtraTree was set at the default value “None” which allowed 

nodes of the decision tree to expand until every leaf contained the minimum number of 

samples that could not be split. The optimum values of each parameter for Random 

forest are given in Table 6.5. Figure 6.9 depicts the performance of RF with varying 

values of four important parameters. Training and testing estimation accuracies of RF 

are found to be the highest among all other paradigms applied in this study as shown in 



167 
 

Table 6.6 and 6.7. It can be observed from Figure 6.9 that Random forest has minimum 

training and testing RMSE for forecasting oil and gas production.  

 

(a)                                                                             (b) 

 

(c)                                                                                (d) 

Figure 6.9 Effects of parameters’ variation on the performance of Random forest (a) 

Variation of maximum depth (b) Variation of the number of estimators (c) Variation of 

minimum samples leaf and (d) Variation of minimum samples split.   

 

Figure 6.10 Comparison of RMSE occurred during estimation of OPR and GPR 

utilizing machine learning models under study. 
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Table 6.6. The estimation accuracy and errors recorded for different techniques utilized 

for oil production forecasting.   

S. 

No. 

Estimation 

Techniques 

Training 

CC 

Training 

RMSE 

Training 

MAE 

Testing 

CC 

Testing  

RMSE 

Testing  

MAE 

1. 

Multiple 

Linear 

Regression 

0.7816 0.1557 0.1069 0.7724 0.1585 0.1074 

2. ANN 0.9656 0.0663 0.044 0.9514 0.0769 0.0595 

3. SVR 0.9678 0.0628 0.0457 0.9533 0.0767 0.0563 

4 LSSVM 0.9991 0.0020 0.0015 0.9585 0.0638 0.0192 

5. ExtraTree 0.9958 0.0230 0.0057 0.9687 0.0622 0.0191 

6. Random forest 0.9979 0.0164 0.0073 0.9843 0.044 0.0154 

 

Table 6.7. The estimation accuracy and error recorded for different techniques utilized 

for gas production forecasting. 

S. 

No. 

Estimation 

Techniques 

Training 

CC 

Training 

RMSE 

Training 

MAE 

Testing 

CC 

Testing  

RMSE 

Testing  

MAE 

1. Multiple linear 
regression 

0.7881 0.1534 0.1055 0.7869 0.1538 0.105 

2. ANN 0.9651 0.0670 0.045 0.9608 0.0675 0.0311 

3. SVR 0.9728 0.0572 0.0298 0.9507 0.0719 0.0313 

4. LSSVM 0.9876 0.0275 0.0130 0.9571 0.0560 0.0202 

5. ExtraTree 0.9957 0.023 0.0061 0.9757 0.0547 0.0182 

6. Random forest 0.9979 0.0164 0.0073 0.9831 0.0457 0.0162 
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6.6 Summary 

A rigorous investigation of five machine learning paradigms has been done in the quest 

for higher estimation accuracy in production forecasting. Volve oil and gas production 

field data were utilized for training and testing of machine learning models. The 

production data contained eight input variables that were pre-processed before the 

development and testing of various models. RF and ExtraTree are the first time 

implemented for production forecasting and have shown improvement in estimation 

accuracy as compared to LSSVR, SVR, and ANN. The relevance of each predictor 

variable is also studied using statistical analysis and the Relief algorithm. The 

contribution of this study is to identify the most suitable and robust intelligent 

forecasting model for daily hydrocarbon production through surface chokes. Machine 

learning paradigms are found useful in correlating surface measured predictor variables 

with daily oil and gas production rates with high estimation CC (approximately 0.98) 

and minimum prediction errors. Random forest and ExtraTree ensembles have 

outperformed the popular estimation models, viz. ANNs, SVR and LSSVR, for 

production forecasting. The performance of LSSVR has been found slightly better than 

conventional SVR for production forecasting. However, proper tuning of the model’s 

parameters is essential for its impressive performance. WHT has been identified as a 

maximum contributing variable for the estimation of daily hydrocarbon production 

using the Relief algorithm. The analysis of estimation results indicates that RF and 

ExtraTree are powerful techniques for production forecasting.  
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Chapter 7 

Conclusions and Future Scope 

7.1 General 

The increased trends towards, measurements-while-drilling and smart-well technology 

had led to a digitalization boom and more automation, in the oil and gas industry. 

Monitoring and control of various petroleum field operations are performed using 

information acquired from the installed sensors. These sensor-based measurements 

produce a large amount of field data that are needed to be analyzed properly.  

Conventionally, field data are interpreted by experienced experts to extract useful 

information. Extraction of useful information from the acquired data poses various 

challenges as discussed in the earlier chapters. Further, with the advent of 

measurements-while-drilling and smart-well technologies, there is a large increase in 

the volume of data generated and to be analyzed.  These data demand advanced 

computational tools to be employed for their processing and analysis. Therefore, data-

driven machine learning models are found to be a more suitable candidate for 

processing complex oil and gas field data. These models can provide real-world 

solutions to several complex petroleum problems and will expedite automation of 

various field operations. The application of these data-driven models requires 

comprehensive investigations before their deployment at the real field level. 

     Quantitative lithofacies modeling is one of the most challenging parts of reservoir 

characterization that involves the identification of subsurface lithofacies [1]. 

Understanding of petrophysical properties of rocks and their spatial distribution in 

association with lithofacies are essential for the development of a reservoir model to 

produce hydrocarbon. Several intelligent machine learning models were applied for the 



172 
 

automatic identification of lithofacies through computational processing of well logs 

data. However, these methods require much improvement in their classification 

accuracy and generalization performance before they can be used in the real field 

scenario.  

    Drill bits and ROP are the important drilling parameters that are needed to be 

optimized for the success of drilling operations due to their large impact on operational 

efficacy and cost. Selecting the right bit types for drilling operations is still one of the 

most challenging tasks due to its dependency on various factors. Recently, data-driven 

intelligent models have been utilized to find suitable types of drill bits. However, none 

of them have considered the problem of imbalanced data that will naturally occur due to 

the varying thickness of subsurface lithofacies. The actual field data contain the uneven 

distribution of data samples that result in a complex imbalanced multiclass classification 

problem during drill bit selection. 

     Hydrocarbon production forecasting is an important task for reservoir management 

and production optimization. Several theoretical and empirical correlations have been 

proposed to estimate the hydrocarbon production rate. However, these methods are 

found to be less accurate and unreliable for hydrocarbon flow rate predictions. Data-

driven models can be used for the estimation of the hydrocarbon flow rate, however, 

only limited applications of machine learning models are found in the literature on this 

important issue. Further, various input variables of production data are required to be 

examined for their importance and contribution in the estimation of hydrocarbon 

production rate.  

     To improve the performance of prevailing machine learning models, more reliable 

and accurate data-driven workflows, which recognize targeted operational parameters, 

have been incorporated in this thesis work. Recently, hybrid computational models, 
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such as ensemble methods, etc., are introduced for processing complex petroleum data 

[5]. These techniques are of significant importance, especially, when a high 

classification or estimation accuracy is targeted, as they can increase the generalization 

capabilities of the existing machine learning model by enhancing its modeling strategy 

[5].  The research work carried out in this thesis focuses on the applications of ensemble 

methods for lithofacies identification, suitable drill bit selection, optimization of drilling 

rate of penetration, and estimation of hydrocarbon production rate using diverse 

petroleum data. The main contributions of the research work carried out in this thesis 

are as follows.  

 A new homogeneous ensemble-based workflow has been proposed for 

automatic identification and recognition of geological lithofacies for 

unconventional mudstone reservoirs.  

 A novel application of heterogeneous ensemble methods has been performed to 

achieve a better generalization performance for the complex geological 

mudstone lithofacies.  

 A novel method based on Response surface analysis and Artificial bee colony 

has been proposed for drill bit selection utilizing optimum values of drilling 

penetration rate (ROP).    

 An innovative adaptation in ensemble methods along with resampling 

techniques has been proposed to resolve the imbalanced data issue encountered 

during the drill-bit selection process. 

 A comprehensive study has been performed using ensemble methods to obtain 

the best performing forecasting models for oil and gas production through 

surface installed chokes. 
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 Systematic workflows and guidelines have been provided for the pre-processing 

of data and implementation of all proposed methods. 

This chapter aims to highlight the main findings of the work carried out in this thesis 

and to make suggestions for future research work. This section concludes with an 

informative summary of all the work carried out and presented in the thesis. 

7.2 Lithofacies modeling using homogeneous ensemble methods 

Big data-driven ensemble methods, which is a novel approach for lithofacies modeling, 

have been critically examined in this study for their efficacy in enhancing the 

classification performance of the existing supervised classifiers, used in quantitative 

lithofacies modeling. Since the performance of ensemble methods is greatly influenced 

by the selection of base classifiers, therefore five most popular ensemble methods have 

been combined with seven base classifiers to examine their suitability in the modeling 

of geological lithofacies. Standard statistical metrics have been used to authenticate the 

classification performances of ensemble and base classifier combinations for 

quantitative lithofacies modeling. The research work carried out in the study directed to 

the following conclusions: 

 Selection of the base classifiers for ensemble learners is found to be very crucial 

for the lithofacies modeling using well-logs data. 

 Most of the ensemble methods have outperformed the corresponding single 

classifier based techniques found in the literature for quantitative lithofacies 

modeling. 

 The suitable selection of base classifiers for ensembles have resulted in the 

following pairs: Bagging-CART/C4.5, AdaBoost-C4.5, Rotation forest-SVM, 

Random subspace-SVM, and DECORATE-C4.5 
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 The classification performance of three base classifiers are found to be in close 

competition with each other (CART, C4.5, and SVM) for quantitative lithofacies 

modeling. 

 RBF is found to be the worse base classifier when used with any ensemble 

method. Therefore, it should be avoided as a base classifier for quantitative 

lithofacies modeling. 

 SVM has recorded the highest overall classification accuracy with Random 

subspace ensemble for quantitative lithofacies modeling. Hence, it is found to be 

the most suitable ensemble base combination for quantitative lithofacies 

modeling among various HoEMs. 

7.3 Lithofacies modeling using heterogeneous ensemble methods 

In this study, two HEMs, namely Voting and Stacking, ensembles have been applied for 

the quantitative modeling of mudstone lithofacies using Kansas oil-field data. RF, 

gradient boosting (GB), SVM, and MLP have been incorporated as base classifiers in 

the applied HEMs architecture. A comprehensive comparison has also been performed 

among these classifiers for lithofacies identification. Multiple wells data have been 

considered to achieve better-generalized results for lithofacies modeling.  A rigorous 

facies-wise comparison has been made between Stacking and Voting ensembles for the 

detection and identification of lithofacies. Stacking has shown nearly 4% and 2% 

improvement in test accuracy as compared to SVM and RF. Four popular machine 

learning algorithms have been combined in HEMs as base classifiers to provide more 

accurate and generalized results. The individual performance of the abovementioned 

classifiers has been evaluated with proper parameter optimization in their stable search 

ranges. The validation curve and grid search algorithm have been properly utilized for 



176 
 

the model parameters tuning to achieve maximum classification accuracy. The research 

work carried out in this study has led to the following conclusions.  

 The performance of HEMs depends upon the selection of efficient base 

classifiers for quantitative lithofacies modeling.  

 Validation curve has been found as an efficient measure for identifying stable 

search range for machine learning parameters.  

 The Stacking ensemble has shown great potential to extract lithofacies 

information from well logs data.  

 The training and testing classification accuracies of HEMs have been found 

highest among the other classifiers used in this study.  

 DP layer is found to be the most challenging facies among all the nine target 

lithofacies. The Stacking ensemble has given the highest individual 

identification accuracy for all the layers of lithofacies. 

 Prediction accuracy of individual facies ranges from 67.9 to 95.8% (worst to 

best possible testing accuracy), and maximum overall accuracy is 

(training=92.78% and testing=88.32%) obtained for Stacking ensemble. 

 HEMs have shown their potential for quantitative lithofacies modeling and have 

outperformed the other classifiers.  

 A combination of diverse base classifiers will lead to higher accuracy and better 

model generalization.  

The analysis of results reveals that HEMs are practical and more accurate models, 

with a significant improvement in classification accuracy for lithofacies 

identification, as compared to the individual base classifiers.   
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7.4 Intelligent drill bit selection using Response surface methodology and Artificial 

bee colony 

In this work, Response surface methodology (RSM) and Artificial bee colony (ABC) 

have been combined to choose different drill bit types based on the optimum values of 

ROP. RSM has been applied for the generation of the ROP objective function and 

further optimized it with ABC to search the optimum values of ROP and drill bit types. 

The performance of the proposed approach was also compared with the prevailing 

ANN, ANN, and GA models for drill bit selection and drilling optimization. This work 

provides an alternate intelligent approach for bit selection as compared to the popular 

ANN and GA combination model. The research work carried out in this study has led to 

the following conclusions.  

 The proposed drill bit selection method was found to be more accurate than 

existing models.  

 The correlation coefficient of the RSM objective function is found to be 81.23% 

while 85.5 % has been found for ANN during the estimation of ROP.  

 The ROP objective function developed through RSM was found to be less 

complex than the ANN-based objective function due to the absence of an 

internal exponential function.  

 It is observed that ANN needs more computational time for the generation and 

optimization of the ROP objective function.  

 These models were found to be case-specific data-dependent models and involve 

calibration with other field data.  
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 This approach has presented positive results for the sustainable development of a 

more efficient, robust, reliable, and economical approach to achieve drilling 

optimization and cost reduction.  

The proposed approach can effectively reduce the overall time and expenses involve 

in drilling operations that a company invests in a field by smartly selecting the 

optimum parameters of any newly planned oil and well. 

7.5 Drill bit selection using ensemble methods and data resampling techniques 

A novel data-driven approach has been proposed using the fusion of data 

resampling technique and ensemble method for handling the imbalance issues of 

complex drilling data. The problem of imbalanced training data results in the 

development of unreliable biased classifiers that are unfit for practical field applications. 

Two experimental data-driven scenarios have been specially designed and tested to 

confirm the generalization of the proposed approach for drill bit selection. An extensive 

comparative study has been performed to evaluate the performance of popular 

classifiers for the screening of drill bits. After a thorough comparison of results, the 

following important conclusions are drawn. 

 Data imbalance condition exists due to the drilling of thin lithofacies which 

deteriorate the performance of the applied classifier. 

 The performance of conventional classifiers is largely affected by data imbalance 

issues. Conventional classifiers can’t be trusted for the drill bit selection, especially 

for critical drilling zones. 

 The combination of ensemble methods with the data resampling technique results in 

modified ensemble classifiers that are found to be efficient even in highly 

imbalanced conditions. 
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 WBCRF technique has given the most impressive performance during automatic bit 

type selection with testing accuracy ranges from 92% to 99%, and G-mean (0.84–

0.97) for various experimental scenarios. 

 The large fluctuations in the performance of classifiers have been recorded in the 

8.5” section in terms of precision, recall, and F1 scores. It is observed that drill bit 

selection becomes difficult in the lower formations due to uncertainty in subsurface 

conditions. 

 WBCRF has given good prediction results for screening drill bit even for critical 

drilling zones. 

 RF has shown great immunity for data imbalance conditions and successfully 

maintained its performance even in the critical 8.5” section. 

The present study shows that the ensemble methods have great potential for automatic 

drill bit selection. The proposed approach can also be applied over any other oil and gas 

fields to automate the drill bit selection, which will minimize human error, time, and 

drilling cost. 

7.6 Assessment of ML models for forecasting of hydrocarbon production 

A rigorous investigation of five machine learning paradigms has been done in the quest 

for higher estimation accuracy in production forecasting. Volve oil and gas production 

field data were utilized for training and testing of machine learning models. The 

production data contained eight input variables that were pre-processed before the 

development and testing of various models. Random forest and ExtraTree are the first 

time implemented for production forecasting and have shown improvement in 

estimation accuracy as compared to LSSVR, SVR, and ANNs. The relevance of each 

predictor variable is also studied using statistical analysis and Relief algorithm. The 

contribution of this study is to identify the most suitable and robust intelligent 
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forecasting model for daily hydrocarbon production through surface chokes. The 

research work carried out in this study has led to the following conclusions.   

 Ensemble paradigms are found to be an efficient means in correlating surface 

measured predictor variables with daily oil and gas production rates.  

 Random forest and ExtraTree ensembles have outperformed the popular estimation 

models, viz. ANNs, SVR and LSSVR, for production forecasting. 

 Random forest ensemble has given very high estimation accuracy with coefficient of 

correlation close to 0.98 and minimum prediction errors (RMSE value =0.045). 

 The performance of LSSVR has been found slightly better than conventional SVR 

for production forecasting. However, proper tuning of the model’s parameters is 

essential to obtain such performance. 

 WHT has been identified as a maximum contributing variable for the estimation of 

daily hydrocarbon production using the Relief algorithm.   

The analysis of estimation results indicates that Random forest and ExtraTree are 

powerful techniques for production forecasting.  The estimated daily production of oil 

and gas, through surface chokes, has been found quite consistent with the field 

measured production data using Random forest ensemble.  

7.7 Future scope 

As a consequence of the work carried out in this thesis on the assessment of machine 

learning models for reservoir characterization and drilling automation, the following 

future areas of research are identified. 

1. Ensemble methods are successfully investigated for depth-wise recognition of 

geological lithofacies. To achieve higher accuracy, these results are needed to be 
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integrated with seismic data of the geological formation. A deep learning neural 

network can be examined for developing a 3-D reservoir model that utilizes 

geochemical data, well logs, and pulsed neutron spectroscopy log data together. 

2. More research is required to investigate other ensemble approaches such as bucket 

of models, cascading, random committee, clustering ensemble, etc. for their feasible 

implementation for quantitative lithofacies modeling. 

3. Heterogeneous ensemble methods have been utilized for extracting useful 

geological facies information from well logs related to complex mud rock 

lithofacies. This study has used five popular base classifiers, other base classifiers 

and their combinations can be included in future research work for different 

mudrock reservoirs. 

4. An ideal intelligent data-driven reservoir model should automatically estimate its 

properties along with depth-wise facies layers integrating well logs, geochemical 

data, seismic data, and pulsed neutron spectroscopy log. Multiagent-based systems 

can be explored for the integration of the different data sources for developing 

quantitative lithofacies modeling.  

5. Drill bits selection has been performed based on two data-driven approaches. 

Initially, drill bits were selected based on the optimum values of the drilling 

penetration rate. Theoretically, this approach has given impressive results along with 

cost minimization of drill bits utilized for drilling the wells. This approach is 

required to be tested in real field drilling operations to test its efficacy in real-time 

scenarios.  

6. Drill bit selection has also been formulated as a multiclass classification problem 

having an imbalanced data issue. Data resampling and boosting techniques have 

been combined with ensemble methods to tackle the formulated classification 
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problem. However, other approaches such as ‘adaptive algorithm’ and ‘cost-

sensitive learning’ can also be explored to solve data imbalanced issues. These 

models are also needed to be tested on real field conditions.   

7. The reinforcement learning approach can be explored for the automation of various 

drilling processes. Further, the reinforcement learning approach can be investigated 

with streaming drilling data for automatic decision-making in real-time. 

8. Chapter 6 investigates several machine learning models for the production 

forecasting of hydrocarbon. The estimated daily production of oil and gas, through 

surface chokes, has been found quite consistent with the field measured production 

data using RF ensemble. However, there are several other types of intelligent 

techniques that can also be explored for modeling and optimization of multiphase 

flow through the surface chokes. 

Few technical limitations exist in this thesis work are described as follows: (a) The 

proposed data-driven frameworks are required to be tested on real-field streaming data 

to evaluate the adaptability of applied machine learning models. (b) Multi-variety data 

sources must be considered for the pattern recognition tasks to increase their operational 

reliability in decision making. (c) The complexities of intelligent algorithms, data-

driven frameworks, and associated processes make error diagnosis difficult. (d) Time 

constraints with big training data. (e) These data-driven applications require a large 

number of statistical tests for their verifications at a theoretical or conceptual level.   
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Appendix A 

Table A1. Different drill bit utilized for drilling of Volve wells at different 

depths. 

Wells Depth In-Out (m) Bit Type IADC Code Bit Size (Inch) 

F-4 260–1360 1 M115 PDC 17.5 

 1360–2770 2 M422 PDC 12.25 

 2770–3510 3 M222 PDC 8.5 

F-5 230–1415 4 M115 PDC 17.5 

 1415–2930 5 M223 PDC 12.25 

 2930–3785 6 M323 PDC  8.5 

F-7 217–307 1 M115 PDC 17.5 

 915–1080 6 M115A PDC 12.25 

F-9 216–918 10 Smith XR+VEC 

MTMZ2069 

17.5 

F-10 146–207 7 XR+VEC MZ25069 36 

 207–1400 8 XR+MG04B 26 

 1400–1463 9 Reed RSRT16M-C9 17.5 

 1463–2616 9 Reed RSR716M-C9 17.5 

 2616–2825 10 Smith MDI716 12.25 

 2825–3319 10 SmithMDI716 12.25 

 3319–3442 11 Reed Hycalog 

RSX8195219S960 

12.25 

 3442–3695 9 Reed Hycalog 

RSR716D 

8.5 

 3695–4911 13 Reed Hycalog 

RSR816H-C1 

8.5 

 4911–5311 13 Reed Hycalog 

RST816H-C1 

8.5 

F-12 365–1365 14 M415 PDC 26 

 1365–2510 15 M322 PDC 17.5 

 2510–2570 16 135 Milled Tooth 17.5 
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 2570–3110 2 M422 PDC 12.25 

 3110–3515 3 M222 PDC 8.5 

F-14 251–1369 14 M415M PDC 26” 

 1369–2513 5 M322 PDC 17.5” 

 2513–2573 16 MT 135 17.5” 

 2573–3114 2 PDC M422 12.25” 

 3114–3520 3 PDC M222 8.5” 

F-15 144–226 1 M115 PDC 17.5” 

 226–1378 6 M115A PDC 26” 

 1378–1381 12 Reed Hycalog 

RST816H-C2 

17.5” 

 1381–2480 19 M333 PDC 17.5” 

 2480–2536 18 M332 PDC 12.25” 

 2536–3670 5 M323 PDC 8.5 

 3670–4090 5 M323 PDC 8.5” 

Table A2. Selection of the optimum number of neurons in the hidden layer of 

MLP based on minimum training error. 

Hidden Layer Neurons. Neural Network Average Percentage Error 

1 15-1-19 12.95 

2 15-2-19 10.724 

3 15-3-19 12.1 

4 15-4-19 7.42 

5 15-5-19 3.97 

6 15-6-19 3.26 

7 15-7-19 3.6 

8 15-8-19 3.44 

9 15-9-19 3.09 

10 15-10-19 3.88 

11 15-11-19 4.59 

12 15-12-19 2.91 

13 15-13-19 3.67 
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14 15-14-19 1.55 

15 15-15-19 2.91 

16 15-16-19 1.85 

17 15-17-19 2.38 

18 15-18-19 3.53 

19 15-19-19 3.03 

20 15-20-19 3.83 

 

Table A3. A comparative study of significant methods applied for drill bit 

selection. 

S. 

No. 

Publication Techniques Field 

Details 

Data 

Types 

Advantages Limitations 

1. Rabia 

(1985)[6] 

Cost per foot Unavailable Operational 

drilling 

parameters 

Simple  to 

apply and 

empirical in 

nature 

Unfit for 

horizontal and 

multilateral 

drilling 

operation and 

low accuracy 

2. Rabia et al. 

(1986)[5] 

Specific Energy Southern 

North Sea 

Operational 

drilling 

parameters 

Simple  to 

apply 

Based on only 

three 

operational 

parameter and 

low accuracy 

4. Hightower, 

(1964)[8] 

Offset Well 

logs 

County of 

East Texas 

Well logs Easy 

application 

Indirect 

measurement 

of rock 

properties with 

high chances of 

error risk 

5. Perrin et al. 

(1997)[10] 

drilling index Unavailable Operational 

drilling 

parameters 

empirical 

correlation and 

can be easily 

Low accuracy 

and high 

chances of 
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applied  error 

6. Xu et al. 

(1997)[12] 

Empirical 

modeling 

Unavailable Mud 

logging 

data, 

operational 

drilling 

data 

Improved cost 

per foot model  

Mathematically 

complex and 

requires  more 

data 

7. Mensa-

Wilmot et al. 

(1999)[11] 

Formation 

drillability 

parameter 

Unavailable Rock 

mechanical 

and 

geologic 

properties 

Indirect 

measurements, 

and more 

accurate than 

empirical 

correlations  

High level of 

uncertainty in 

well logs data 

due to 

hydrocarbon 

reservoir 

heterogeneity   

10. Uboldi et al. 

(1999)[13] 

Rock strength 

measurements 

and indentation 

technique 

Southern 

Italy, near 

Apennines 

chain 

Rock 

mechanical 

and 

geologic 

properties 

Accurate 

measurement of 

core properties 

Require testing 

lab, costly and 

time-

consuming   

11. Bilgesu et al. 

(2000)[2] 

ANN Middle East 

field 

BS, WOB, 

RPM,  

pump rate, 

DT, and 

BT 

High prediction 

accuracy 

Not immune to 

imbalanced 

data, noise, 

overfitting and 

underfitting 

problems 

12. Yιlmaz, et al. 

(2002)[17] 

ANN and 

fractal 

geostatistics 

southeast 

Turkey. 

rock bit 

data 

High prediction 

accuracy 

Not immune to 

imbalanced 

data, noise, 

overfitting and 

underfitting 

problems 

13. Bataee et al. 

(2010)[7] 

bit dullness Shadegan 

oil field 

Human 

experience 

Simple, 

empirical, and 

organized. 

Requires 

human visual 

expertise with 

high chances of 

error  
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14. Edalatkhah, 

Rasoul, and 

Hashemi, 

(2010)[18] 

ANN and 

Genetic 

algorithm 

South Pars 

Field 

Drilling 

operational 

data 

More accurate 

than individual 

ANN model 

Not immune to 

imbalanced 

data, noise, 

overfitting and 

underfitting 

problems 

15. Hou, Chien, 

and Yuan, 

(2014)[19] 

ANN Tarim 

Oilfield, 

offset wells 

data, 

drillability, 

and 

lithofacies 

information 

More accurate 

than empirical 

models 

Not immune to 

imbalanced 

data, noise, 

overfitting and 

underfitting 

problems 

16. Sherbeny et 

al. 

(2016)[14] 

Image logs and 

mineralogy 

logs 

Unavailable Image data 

and 

mineralogy 

data 

Accurate 

method 

Application in 

limited 

lithofacies, 

computationall

y challenging, 

and costly 

technology. 

17. Nabilou 

(2016)[20] 

Resistance 

against Drilling 

Southwest 

of Iran 

Geo-

Mechanical 

data 

More accurate 

than the 

empirical 

correlation   

Application in 

limited 

lithofacies, 

computationall

y challenging 

and costly 

technology 

18. Mardiana 

and Noviasta 

(2017)[15] 

Rock strength 

analysis and 

Dynamic 

Finite-Element 

Analysis (FEA) 

Modeling 

Unavailable Offset well 

logs data 

More accurate 

than the 

empirical 

correlation   

Application in 

limited 

lithofacies, 

computationall

y challenging 

and costly 

technology 

19. Momeni et 

al. 

(2018)[22] 

ANN Unavailable drilling bit 

records 

from offset 

More accurate 

than the 

empirical 

Not immune to 

imbalanced 

data, noise, 
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wells correlation   overfitting and 

underfitting 

problems 

20. Cornel and 

Vazquez 

(2020)[16] 

Rock Strength 

Analysis and 

bit dull grading 

approach 

South West 

of 

Wandoan, 

Queensland 

dull 

grading and 

bit records 

More accurate 

than the 

empirical 

correlations   

Application in 

limited 

lithofacies, 

computationall

y challenging 

and costly 

technology 

21. Abbas et al. 

(2019)[23] 

ANN, Genetic 

algorithm and 

Mechanical 

earth model 

Unavailable Operational 

drilling 

parameters 

More accurate 

than individual 

ANN model 

and empirical 

models 

Not immune to 

imbalanced 

data, noise, 

overfitting and 

underfitting 

problems 

22. Proposed 

Approach 

Ensemble 

methods and 

Resampling 

techniques 

North Sea Operational 

drilling 

parameters 

and mud 

logging 

data 

More reliable, 

stable, and 

accurate than 

previous 

models 

Need to be 

tested on field 

with streaming 

data conditions. 
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